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Abstract. The Dieterich-Ruina friction law is widely used in rock friction and earthquake 

dynamical contexts. It has proven very powerful and versatile over the last decades, 

being able to reproduce stick-slip as well as fore- and aftershocks and healing of 

faults. This paper shows that the Dieterich-Ruina friction law can also reproduce the 

accelerated creep process preceding slip event in a stick-slip system, not only for steel 

contact, but also for rock contact. The friction law relies on three empirical 

parameters, which have to be identified for each application. The most common 

experimental set-up is the velocity step experiment. In this paper an alternative method 

to identify the parameters is proposed, which uses a stick-slip experiment and a 

numerical fitting approach. 
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1. INTRODUCTION

The Dieterich-Ruina friction law is a special version of the rate-and-state friction law 

introduced by J.H. Dieterich in the 1970s [1, 2], which was proposed by A. Ruina [3, 4]. 

It was originally developed to describe earthquake dynamic processes, namely rock 

frictional contacts experiencing frictional instabilities and it is very widely used in this 

area [5-12]. The popularity of the Dieterich-Ruina friction law (DRF law) comes from its 

extreme versatility, being able to reproduce stick-slip, fore- and aftershocks as well as 

healing of faults [9, 10]. The DRF law states that the coefficient of friction  depends on 

the relative velocity v and the contact history, represented by an internal state variable . 

Several examples for the use of internal variables in friction laws can be found in [13, 

14]. A common form of the DRF law [15] is given as 
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where (.)
*
represents a reference value. The reference state variable value is usually given 

as 
* *

CD / v   . Parameters a, b and DC are the empiric parameters of the friction law. 

Internal variable  , representing the mean lifetime of a micro-contact, is connected with 

the relative velocity by a kinetic equation. Several forms of this kinetic equation have 

been proposed; the Dieterich-Ruina formulation is the one named ‘slip law’ in contrast 

e.g. to the also often used ‘aging law’, see [16] for comparison: 
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The use of the DRF law is not necessarily limited to earthquake dynamical processes. 

The DRF law has shown its applicability to a wide range of materials other than rock, 

including steel, glass, plastic and wood [17]. 

The DRF law is a laboratory based, empirical friction law, which means special 

attention has to be paid to the included parameters, which have to be found 

experimentally. Parameter DC is a length parameter and is expected to be dependent on 

other system parameters and to show scaling behavior [1, 18, 19]. Dimensionless 

parameters a and b are usually found in the order of 210  to 310 . For characteristic 

length parameter DC values around 0 5. to 50μm  for laboratory set-ups and values around 

1  to 10mm  for real faults are identified [7, 18]. 

The most common experiment to identify the DRF law parameters is a velocity step 

experiment as introduced by Dieterich and Kilgore [17] and repeated later on by others. 

The experiment drives a frictional contact at steady velocity before introducing a sudden 

step in the velocity to a value about one order faster, then holds this faster velocity and 

steps down again. From a measurement of the coefficient of friction over slip distance 

parameter DC and difference (a  b) can be identified. This method is still used for the 

identification of DRF law parameters for specific material pairings under given load and 

temperatures [5 6, 20]. It is also used to decide if velocity weakening or velocity 

strengthening is present which can be read from the sign of (a  b). 

This method has a few disadvantages.  Firstly, the velocity step experiment can be 

performed with any frictional contact, independent if the configuration behaves in a DRF 

law fashion or not. This means, even if the DRF law is not a suitable model, the velocity 

step experiment will provide values for its parameters. This can be seen e.g. in [21,22], 

where the found (a  b) values depend on the sliding velocity, which should not be the 

case in a system obeying the DRF law. Secondly, the velocity step experiment does not 

contain stick-slip behavior. This can be advantageous if also possible velocity strengthening 

shall be addressed. But if the DRF law shall be used for the modeling of frictional 

instabilities, it would be desirable to include this dynamic in the process to identify the 

parameters. Lastly, the velocity step experiment only delivers difference (a  b) but not 

both parameters. 

This paper will present a new experimental method to deduce the DRF law parameters 

under consideration of both macroscopic and microscopic features of the stick-slip 



 New Experimental Investigations on the Dieterich-Ruina Friction Law 13 

process. This will be done using a single block slider set-up. The elastically loaded single 

block slider has been excessively used as an analytical model to describe and investigate 

frictional instabilities and stick slip, mainly as a slider-on belt model for brake dynamics 

[23-25] and as loaded block on surface for earthquake dynamics [1, 4, 26, 27]. 

Experimental investigations of this system, on the other hand, are rare. Here, an extensive 

measurement series is performed using a single block slider set-up (section 2) combined 

with numerical modeling techniques (section 3) to show once more the eminent versatility 

and power of the DRF law and to identify the DRF law parameters of the system. 

2. EXPERIMENTS 

2.1. Set-Up 

The experimental set-up follows the concept of the single block slider model. The test 

stand and the measurement system are shown in Fig. 1. 

 

Fig. 1 Experimental set-up (left) and measurement system (right) 

A specimen is pulled over exchangeable v-shaped base plates by a spring. The velocity 

of the spring’s base point is constant and realized via a linear pulling device consisting of a 

linear guidance and a step motor driven spindle. If the specimen does not move, the 

tangential load on the specimen rises linearly with time. The displacement of the specimen is 

measured using a laser-Doppler vibrometer with 8 nm resolution. Additionally, the spring 

force is measured via a load cell. 

Several parameters of this set-up are varied. For the results presented here, I have used 

four different specimens, two made of marble, two made of steel, with different contact 

geometries (see Fig. 2). Two different sets of base plates, one made of steel and one made 

of sandstone, are used. The stiffness of the pulling spring is varied as well as the driving 

speed. For each measured configuration at least thirty 10s measurements are performed, 

such that a total number of 932  experiments are evaluated for the presented results. 
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Fig. 2 Used specimens. Steel specimens (sharp edged and cylindric) on the left, marble 

specimens (regular circular and irregular) on the right 

2.2. Results 

All experimental configurations show a distinct stick-slip behavior. An example for a 

displacement and velocity curve over time can be seen in Fig. 3. We see comparably long 

stick phases that alternate with quick and sudden slip events. If one zooms in the stick 

phases to the micro meter scale, a regular accelerated creep process can be seen (Fig. 4). 

This preceding creep can even be used to predict the time of the next slip event [28, 29]. 

 

Fig. 3 Example of a typical displacement and velocity curve. The configuration of this 

data set is marble on sandstone with a driving velocity of 10mm/s 
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Fig. 4 Accelerated creep during stick phases. The shown data set is the same as in Fig.3, 

the first slip event is very small and can hardly be seen in the macroscopic view 

In this paper, the experiments shall be used as a method to extract Dieterich-Ruina 

friction law parameters for the given contact. For this, first it must be shown how good the 

microscopic creep process and the fast slip can be described by a model using the DRF 

law. 

3. MODELING AND NUMERICAL FITTING 

The experimental set-up is modeled as a single block slider with Dieterich-Ruina 

friction (see Fig. 5). In this model the specimen is assumed to be rigid, which is a valid 

assumption because the longitudinal stiffness of the specimen is several orders of 

magnitude higher than the contact stiffness. 
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Fig. 5 Single block slider model with Dieterich-Ruina friction. The slider has mass m and 

the spring of stiffness c  is driven with velocity 
0v  

Using the notation from Fig. 5 the equation of motion is given by 
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where g  is the gravity constant. Combined with the kinetic equation (2) a 2 2  nonlinear 

ordinary differential equation system is gained. This can be solved numerically, if some 

obstacles are overcome. I have attenuated the discontinuity of the friction law to make a 

numerical solution faster and more stable. To achieve this, I have approximated the 

signum function as a very steep hyperbolic tangent, which results in a stiff ode system, 

which again needs suitable solver. I have used a Matlab internal solver based on a semi-

implicit Runge-Kutta method. Furthermore, for numerical stability, the arguments of the 

logarithms in (3) are completed with an additional 1  to avoid a sign change. This is 

allowed if reference velocity v
*
 is chosen much higher than all occurring relative 

velocities ( * v x ). The friction law then takes the form 
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I have varied parameters a, b and DC to achieve a best fit with the experimental data. 

During this process it has become clear that the model underestimates the very low creep 

velocities in the region of 10
7

 m/s. This is assumed to be a result of the rigid body 

assumption: The frictional contact has a finite elasticity, which is reversible. This behavior is 

not included in the friction law. To compensate for this shortcoming, additional very slow 

creep velocity v̂  is introduced, which can be estimated as 

 
5 4

0 010 to 10v̂ v v     (5) 

This estimation is gained using a rough approximation of the tangential contact stiffness. 

For the fitting, the numerical and experimental velocity curves are compared. I have 

found the velocity data to be more indulgent and therefore easier to fit than the displacement 

data. A logarithmic error definition is used to not only consider the fast slip events for the 

fitting, but also make the model meet the creep curves. This is especially important because 

the creep contains important information on the frictional behavior. The error definition 

reads 
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As fitted time interval Tfit a value of approximately 16% of a characteristic stick time 

is used. The time resolution is 52 10 st     as in the experiments. To find the optimal 

parameters, a gradient method is used. All fitting procedures use the same starting values 

(see Table 1). For the majority of all data sets the fitting works remarkably well and the 

experimental velocity curves are met over five to six orders of magnitude. A few 

examples are given in Fig. 6. 22%  of the data sets could not be fitted satisfyingly with 

this model. 

Table 1 Starting parameter values for fitting procedure 

a b DC
 

36 10  21 10  2μm  

From the results of these fittings, mean values for the found optimal Dieterich-Ruina 

parameters can be gained. The found mean parameters are gathered in Table 2.  

Table 2 Mean values of optimal parameters for all material pairings 

Material pairing Slider specimen a   in 310  b   in 310  CD   in μm  

Steel-steel Sharp edged 4 16.  10 66.  1 26.  

Cylindrical 3 48.  12 16.  0 74.  

Marble-sandstone Regular circular 4 85.  9 06.  0 74.  

Irregular circular 4 38.  8 89.  0 54.  

The found optimal parameters show a considerable statistical scatter, especially 

parameter DC. This scatter is expected if recalling the physical meaning of DC. 

Characteristic distance DC describes the slip distance over which all micro-contacts are 

renewed [1]; this implies that is lies in the order of magnitude of the size of the micro-

contacts. Since the microscopic contact configuration changes with every new contact 

realization, a statistical spread is anticipated. Parameters a and b do not possess such 

interpretation, but b  has been shown to be closely related to the macroscopic slip length 

and the peak slip velocity [28]. These macroscopic entities should be affected less by 

changes in the microscopic configuration and are therefore expected to scatter less. The 

distributions of the found values for b  and DC follow the general shape of a Gaussian bell 

curve. An example for this can be seen in Fig. 7. The values found for parameter a build 

an exception. They are more uniformly distributed and also show a slight trend with the 

driving velocity, which is undesirable. I assume the reason for this in the definition of the 

length of the fitting interval, which depends on the characteristic stick time and therefore 

on the driving velocity. For future work, this definition should be revised. 
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Fig. 6 Examples for successfully fitted data sets of different material pairings and driving 

velocities. The inserted smaller plots show the fitting region on a logarithmic scale 



 New Experimental Investigations on the Dieterich-Ruina Friction Law 19 

 

Fig. 7 Histograms showing the frequency of optimal found values for the three fitted 

parameters (a, b,
 
DC) for the configuration sharp edged steel specimen on steel 

base plates 

A comparison of the found mean values with values from literature shows a good 

agreement. The values for DC are relatively small, but this can be explained by the low 

normal forces and the very smooth contact surfaces in the experimental set-up. If one 

estimates the values for DC using the recently proposed new scaling law [19], which takes 

into account the normal force and the surface roughness, value around 1 m should be 

expected. 

4. CONCLUSIONS 

A fit of a Dieterich-Ruina friction law model to experimental stick-slip data is 

performed for different material pairings and contact geometries. Most data sets can be 

very well reproduced by the model; the velocity curves are met over five orders of 

magnitude, including the slow and accelerating creep as well as the fast slip events. The 

ability of the DRF law to reproduce the systems behavior over such a range of scales is 

impressive and underlines the importance and power of this friction law. 

Additionally, the characteristic Dieterich-Ruina friction law parameters are gained 

from this fitting, which agree well with literature values. This procedure introduces a new 

experimental method to determine the correct empirical parameters for a given frictional 

contact. The experimental set-up is easier to construct and handle than the ones needed 

for the traditional velocity step experiments. Furthermore, this method directly uses the 

microscopic properties of the system, because the creep process is fitted. It can be an 

attractive alternative especially when the focus is on systems encountering frictional 

instabilities. 
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