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Abstract Structural damping is discussed for the contact of two fibers in a woven 

material. In the presence of both normal and tangential oscillations, structural 

(relaxation) damping takes place even with perfect sticking in the contact, where 

slip-related frictional damping disappears. For the case of an infinite coefficient of 

friction and small amplitudes a closed-form solution for energy lost during one 

oscillation cycle is obtained. 
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1. INTRODUCTION

The present paper is concerned with internal damping in woven materials. When fabrics 

are deformed, energy is dissipated in the contacts between fibers, and it is well known that at 

least part of this dissipation is due to friction in partial slip zones of the contact. Exact 

solutions for frictional damping in the contact of spheres due to tangential oscillations go 

back to Mindlin et. al. [1] and are also applicable to the contact of two crossed cylinders 

(such as the fibers in a woven material). Damping in the presence of both normal and 

tangential oscillations, however, has never been described exhaustively and it remains a 

current research topic [2],[3]. Recently it has been suggested [4] that the superposition of 

normal and tangential oscillations leads, in addition to slip-related frictional dissipation, to 

a new type of non-frictional damping that is caused by elastic relaxation due to variations in 

normal load and therefore contact area. It is found that in the absence of slip (an infinite 

coefficient of friction) and for small oscillation amplitudes, the energy dissipated during an 

oscillation cycle is described by 
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where 
 0

xu and 
 0

zu  are the tangential and normal oscillation amplitudes, 0 is the phase 

shift between the oscillations (the oscillation frequencies are identical), Fn is the normal 

contact force, uz the indentation depth (relative approach of bodies). E
*
 and G

*
are the 

reduced elastic and shear moduli and can be expressed through elastic modulus E and 

Poisson's ratio v as follows, when both contact partners are made from the same linear, 

homogeneous, isotropic material. 
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In the present work we specialize the above result for a system of two fibers crossed at 

right angles, representing a single mesh cell of a woven material. Small oscillations that are 

applied to the end of one fiber produce oscillations in the contact, leading to structural 

damping (and frictional damping, if slip is permitted). All assumptions from [4] (linearly 

elastic materials without viscous effects, infinite coefficient of friction, small amplitudes) 

are used here as well, so as to isolate the contribution of structural damping to overall 

losses. 

2. ANALYSIS 

We consider a very simple model representing a mesh cell of a woven material: two 

fibers with circular sections (with radius R) that are crossed at right angles, Fig.1. The fibers 

lie in x, y - plane, while the upward-facing axis is labeled z. Three of the four fiber ends are 

rigidly embedded in the plane at z = 0, while one end is connected to a parallel guide that 

permits motion in x, y - plane (horizontal and vertical). These boundary conditions are 

neither the only possible nor necessarily the most representative of real fabrics. The above 

model is chosen for its simplicity, while other possible configurations are left for future 

work. The movable end is pre-stressed by deflecting it downwards by Wz,0, which is of the 

order of 2R in woven materials, due to symmetrical boundary conditions. Through this 

initial displacement, contact between the fibers is established, and base loading F 
(0)

 is 

produced in the contact. In addition, the movable end of the fiber is forced to oscillate with 

amplitudes  xW ,  zW , a common frequency and phase shift 0. 

Our general approach is as follows: Firstly, the oscillation amplitudes of the movable 

fiber end are related to force oscillations, with certain amplitudes, in the contact. Linear 

beam theory is used for this, while the influence of indentation depth uz is neglected (our 

general assumption is that  Wz,0 >> uz >> W). The force oscillations in the contact are then 

related to geometrical oscillations through the contact stiffness, which is itself determined 

by the contact configuration, and therefore Wz,0. 
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Fig. 1 Two crossed fibers are considered as elastic beams with circular cross-section 

Consider a beam of length 2l  that is stressed with a contact force Fz in the middle and 

deflected by W0,z at one end. The deflection of the central point (at x = l) of the beam with 

these boundary conditions is known to be [5] 
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where I = R
4
/4 is the area moment of inertia. For the beam with two fixed ends, only the 

first component, due to the contact force in the middle, is present: 
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The difference between the two is equal to indentation depth uz in the contact: 
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As noted above, we assume that the indentation depth is small compared to the 

deflection of the beam, and apply non-penetration condition, uz = 0, which leads to a linear 

relationship between contact force and deflection of the free end: 

 0, 3
 z zF
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l
. (7) 

For tangential loading, the lower beam is stressed length-wise; its deformation therefore 

can be neglected. The equations in this case become 
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Proceeding as above, we obtain 
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The force is thus linearly proportional to the deflection of the end of the movable beam. If 

the latter is now oscillating according to ,0 sinz z zW W W t   and x 0sin( )xW W t    , 

then the amplitudes of the force oscillations in the contact are 

 
3

  z zW
EI

l
F , (11) 

 
3

  xx W
EI

l
F . (12) 

Now, when the oscillation of contact forces is known, the corresponding components of 

relative displacement of contacting bodies, ux and uz can be found by dividing the force 

increments by contact stiffness kx in the tangential direction or kz in normal direction. The 

latter are known to be 

 *2xk G a , (13) 

 *2zk E a , (14) 

where a, the contact radius, is equal to zRu  in the contact of a sphere with a plane or the 

contact of two crossed cylinders [6]. The derivative of the normal contact stiffness with 

respect to indentation depth uz is given by 
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One last step is necessary to tie all equations together: indentation depth uz, which, for a 

spherical contact, is given by [6] 
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where ,

(0)

0 3zF W
l

EI
   is the initial loading determined with Eq. (7). Substituting all 

factors into the relaxation-damping Eq. (1) and simplifying, gives the following result: 
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By introducing fiber aspect ratio l R  , the normalized initial displacement 0 /  zWW R  

and grouping some of the factors under 
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we can write the result more compactly as 
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Note that q varies only slightly for typical values of v. Its numerical value is approximately 

45 for 0.2  , 47 for 0.3  and 51 for 0.5  ). 

3. DISCUSSION 

The obtained result for a system of two crossed fibers is similar to Eq. (1) that describes 

relaxation damping when oscillations are applied to the contact directly. In particular, the 

proportionality to the square of the tangential oscillation amplitude, and the modulus of the 

normal oscillation amplitude is preserved, which is, of course, not surprising, since linearity 

is assumed in the derivation. More interesting is the inverse proportionality to the fifth 

power of the aspect ratio of the fibers, which means that the effect will be much more 

pronounced in densely woven fabrics than in sparse ones. 

The obtained result is only valid for an infinite coefficient of friction. An interesting 

avenue for future work would be to consider realistic coefficients of friction and to 

determine the relative importance of frictional and structural damping. Also, although a 

physical interpretation of relaxation damping in perfect stick conditions is given in [4], the 

underlying mechanism in the presence of sliding is yet to be determined. Other unexplored 

possibilities involve other boundary conditions for the mesh cell, embedding the cell in a 

viscous medium (which would extend the results to woven composites), as well as 

experimental verification. 
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