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Abstract. Using the concept of stress intensity factors, we suggest a way to 

include adhesion into boundary elements simulation of contacts. A local 

criterion concerning the maximum admissible surface stresses decides whether 

the adhesive bonds in particular grid points fail or not. By taking into account 

the grid spacing, a robust methodology is found. Validation is done using the 

theoretically derived cases of JKR adhesion.  
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1. INTRODUCTION

When two arbitrary bodies enter into contact, they exert relatively weak attracting 

forces, which rapidly decrease with increasing distance. This sticking is called adhesion 

and plays an important role in many technical applications such especially glue and 

adhesive tapes. In general, adhesion comes into play when one of the following conditions 

is met. Either the surfaces are very smooth, or one of the contacting bodies is made of a 

very soft material. In both cases, this allows for a wide-spread intimate contact. Adhesive 

effects are also increased when the system size is small due to the different scaling of 

volume- and surface- forces. For example, in micromechanical devices (MEMS), 

engineers must design clearances and stiffnesses in such a way that the structures stay 

movable and do not interlock due to adhesion. The same effect is exploited in biological 

systems, such as the sticking pads of insects or lizards. For the understanding and 

prediction of such systems, an appropriate description is needed. From a theoretical point 
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of view, two influential approaches have been developed in order to describe adhesive 

contacts for the basic case of elastic, parabolic bodies. Johnson, Kendal and Roberts [1] 

(JKR), took into account the adhesion forces within the contact area. They calculated the 

contact radius in the equilibrium state from the minimum in the total energy, which is, in 

turn, obtained from the elastic deformation energy, the potential of external forces, and 

the surface energy of the contacting bodies. Derjaguin et al. [2] (DMT theory) considered 

the molecular forces of attraction only within a ring outside the contact area. Even though 

these forces contribute to the macroscopic attracting force, they are assumed to cause no 

deformation. The predicted maximum adhesion force coincides with the one given by 

Bradley [3] for the contact between rigid spheres. 

This discrepancy between the JKR and the DMT theories was finally resolved by 

Tabor [4] who successfully formulated two different regions of validity for both cases, 

based on a dimensionless parameter. Accordingly, the DMT theory applies to small, rigid 

spheres, while the JKR theory is more appropriate for describing large, soft spheres. 

Later, Johnson and Greenwood [5] pointed out the fact that the JKR theory still provides 

good results outside its actual area of validity. Over the years, JKR theory has evolved to 

be the most widely used in the description of adhesion.  

 

Fig. 1 Qualitative presentation of an adhesive contact between a rigid,  

curved body and an elastic half-space 

2. LOCAL CRITERION IN BEM 

Assume two non-conforming bodies z1(x,y), z2(x,y) in contact. Elastic deformations 

uz(x,y) inside the resulting contact zone must satisfy the condition 

 1 2( , ) ( , ) ( , ) 0zz x y z x y u x y    (1) 

in order to account for non-overlapping. The necessary surface stress can only occur 

inside the contact region and, for bodies with smooth geometries, it will vanish at the 

contact border. When the bodies keep the same contact area, but are pulled apart by 

distance d, then all the surface points within the contact area are deformed by that 

constant distance d and the deformation now reads 

 1 2( , ) ( , ) ( , ) 0zz x y z x y u x y d    . (2) 

In the case of a circular contact area, additional stress  which arises from the constant 

deformation by distance d, is given by 
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where   is the effective adhesion energy after Dupré for two surfaces. For other contact 

zone geometries we expect also a singularity of this type  

 0( )x L x  ,  (5) 

similar to the theory of fracture mechanics. Here x is a coordinate in the interface plane 

perpendicular to the contact boundary, starting from the same and pointing into the 

material. L and 0  are characteristic length and stress. This singular curve applies, as long 

as we are sufficiently close to the contact border, which corresponds to the crack tip (see 

Fig. 2). In fracture mechanics, as well as adhesion theory, this rise in local stresses leads 

to a detachment of the bodies and thereby moves the crack tip or decreases the contact 

zone. 

In a numerical representation of stresses, this singularity, Eq. (5), is a problem for two 

reasons. First, the discretized grid is limited in its resolution and can only approach the 

contact border with a certain precision. Second, numerical number representation is 

limited as well and cannot take into account very high values [6]. We will now suggest a 

way of overcoming these difficulties using a local, mesh dependent detachment criterion. 

Let h be the grid spacing, the distance between two points on the numerical mesh.  

 

Fig. 2 Singularity (5) at the contact area boundary. By requesting points to have  < h, 

it is guaranteed for these points to be inside the contact zone by at least distance h  

(the grid spacing) 
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Assume a singularity according to Eq. (5). Even though the exact description of the 

singularity and the border is not possible using discretized grid and number format, we 

can safely state that any point in the vicinity of the boundary which has tensile stress 

below 

 1 2

0h L h h      (6) 

is at least distance h  away from the singularity and should adhere in any case. Any stress 

greater than h, the grid point is located ‘at’ the boundary, with the precision of the 

chosen grid. If we wish to find a local stress criterion   for detachment, it is clear that 

such a criterion must scale with h
1/2

 just like h. Concerning materials parameters E
*
 and 

, the criterion must scale in the same way as stress intensity factor KI. In order to find 

the correct value and factor, let us consider another perspective. A rectangular grid 

element can only detach when its stored elastic energy Uel exceeds the separation energy 

Usurf. For a rectangular grid with dimensions x yh h  the latter is simply given by 

 surf x yU h h  . (7) 

The elastic energy stored in a grid element can generally be obtained from  

 
1

2
elU udA   , (8) 

where u   is the deformation resulting from surface stress  . With Boussinesq 
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and the basic BEM assumption that the pressure inside the element is constant, this gives 
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After some algebra we find 
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  (11) 

where 2 2

x yh h h  . In the common case of square grid elements x yh h h  , Eq. (11) 

reduces to  

 
3 32 3 2 1

1 2 log
3 2 2 1

0.473201h h


  
         

  (12) 
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Demanding that Uel = Usurf for     we can compare Eq. (7) and Eq. (10) to define a 

grid-dependent, critical stress value 

 *x yh h
E 


   . (13) 

Or for square grid elements 

 
*

0.473201

E

h


 


  (14) 

The requirement is that no single tensile stress value solved for a local grid point must 

exceed  .  

In a numerical procedure, this can be handled in the following way.  Assume we have the 

adhesion-free normal indentation of the indenter solved (see [8]). Now we wish to decrease 

the indentation depth from dmax to d. The procedure is done as depicted in Fig. 3. In the first 

step, contact area A  is left unchanged and the stresses are solved which are necessary for 

eliminating the gap between the bodies. This can be done using the techniques described in 

[8]. The discrete stresses are individually compared to  . All the points where this value is 

exceeded by tensile stress are excluded from the contact zone and the system is solved again. 

The loop of the algorithm is used to find the correct real contact area.  

 

Fig. 3 Flow chart of adhesion algorithm 

For every iteration, we must recalculate all the stresses inside the contact area. It is 

potentially a time-consuming procedure but the contact area can only decrease, so the 

algorithm is guaranteed to terminate.  
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3. NUMERICAL SAMPLE STUDIES 

In this section we will show that the methodology proposed in section 2 can be effectively 

used to simulate the adhesive detachment of bodies in contact. Several test cases exist, where 

analytical solutions are available. In order to illustrate the application of this rule, we will first 

consider the adhesive contact between a flat, cylindrical indenter with radius R and an elastic 

half-space. In this case physically, the whole contact zone will detach simultaneously. The total 

normal force required to separate the indenter from the substrate is then [9] 

 3 *8adhF a E     (15) 

The critical value for the (negative) indentation depth at the moment of detachment is given by  

 
* *

2

2
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a
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
   (16) 

Fig. 1 shows the resulting forces for a decreasing indentation depth. It can be seen that as 

d approaches dcrit, the force approaches Fadh  Eq. (15) and then suddenly falls to zero (see 

arrow). At Fadh, also the whole contact is suddenly lost, as depicted in Fig. 1 (b). 

 

Fig. 4 Numerical pull-off of a flat cylindrical indenter. Crosses demark points where no 

local detachment is found, circles show points where at least one grid point has 

lost contact. (a) normal force over indentation (b) normal force over contact area 

Let us now test the classical JKR case of a parabola indented into the elastic half space. 

At the critical point with maximum adhesive force, the theory states [9]  
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Starting from a deeper indentation, the dependencies between normalized indentation 

depth critd d d , normal Force adhF F F , and contact radius 
crita a a  read [9] 

 
2 1 23 4d a a    (18) 

and 

 
3 3 2 5 32 , 0.12( 1) 1F a a F d     .  (19) 

In Fig. 5 and Fig. 6 these dependencies are shown with solid lines.  
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Fig. 5 Numerical indentation-controlled pull-off of an adhesive contact with a parabola. 

The grid resolution is 128128 points. Crosses demark points where no local 

detachment is found, circles show points where at least one grid point has lost 

contact. (a) normal force over indentation (b) normal force over contact radius 

The calculation time of the overall procedure depends very much on the implementation 

of the stress-finding subprocedure, which usually has complexity N 2g, where Ng is the number 

of grid points in one direction. 

 

Fig. 6 Numerical indentation-controlled pull-off of an adhesive contact with a parabola. 

The grid resolution is 512512 points. Crosses demark points where no local 

detachment is found, circles show points where at least one grid point has lost 

contact. In contrast to the case shown in Fig. 5, this time the inital indentation is 

the Hertzian case with no prior pull-off. Therefore, tensile stresses must first build 

up at the boundary, before some detachment occurs. (a) normal force over 

indentation (b) normal force over contact radius 
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As points are individually excluded from the contact zone, increasing the grid 

resolution also increases the number of iterations used. Empirically, we have found the 

computational time to scale with  Ng
 5/2

 and  Nd
 0.55

, where Nd is the number of intermediate 

indentation steps. In our setup, a full JKR solution as in Fig 5. took 106 seconds with a 

grid of 256 256  (Ng = 256) and Nd = 45.   

4. CONCLUSION 

Similar to crack propagation, simulating the adhesive normal contact problem is 

difficult because it generally has a singularity at the boundaries. When treating the 

problem numerically, it has been unclear how to find the correct boundary and how to 

deal with the finite resolution that is available. We suggest a very simple stress-based 

criterion to be included in BEM simulations. Whenever the criterion is not satisfied, the 

particular points are removed from the contact zone. Using two examples with known 

analytical solutions, we show that this approach can successfully simulate the pull-off of 

adhesive contact. Plasticity is not taken into account. The method shown here can be 

combined with other BEM techniques, in order to simulate roughness, viscoelastic materials 

or frictional effects. Readers who wish to implement the new methodology can do so using 

the instructions given here and in [8]. 
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