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Abstract. In this study, we elaborate on the friction between a one-dimensional 

elastomer and a one-dimensional rigid randomly rough surface. Special emphasis is 

laid on the energy dissipation in the elastomer. Its subsequent temperature change is 

under inspection. The elastomer is modeled as a spring and a damper in parallel (Kelvin 

model) in a one-dimensional substitute model according to the concept of the method of 

dimensionality reduction (MDR). The randomly rough surface is a self-affine one-

dimensional fractal whose Hurst exponent H is varied in an extended range between -1 

and 3. In full contact, the temperature shift is dominated by ratio between the typical 

power dissipated in the elastomer to the power that is led away. It is independent of the 

normal force and proportional to the sliding speed squared. The flash temperature 

behavior is discussed for different Hurst exponents. 

Key Words: Contact Mechanics, Elastomer Friction, Temperature Dependence, 

Method of Dimensionality Reduction 

1. INTRODUCTION

The roughness of surfaces is considered to be the main source of friction since the 

seminal work of Bowden and Tabor [1]. Greenwood and Tabor [2] ascribe the frictional 

behavior of polymers to the deformation losses in the material. Experimentally, Grosch [3] 

found support for these thoughts by considering friction between rubber and hard specimens 

with controlled roughness. An insight into the role of rheology [4] and surface roughness [5, 

6] in polymer friction was gained in the subsequent years. The concept of the coefficient of

friction is used in most works in the field. Hereby, Amontons' laws are implicitly considered 

to hold: The frictional force is proportional to the normal force and hence the coefficient of 

friction is independent of the normal force [7, 8]. This is a widely spread law, which is a 

rather crude model of real frictional systems. It is well-known that both the static and the 
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dynamic coefficient of friction may be changed by a factor of four depending on geometrical 

and loading conditions of the tribological system under observation. Schallamach [9] studied 

elastomer friction experimentally. Deviations from Amontons' laws were under investigation 

in recent studies [10, 11]. They can originate from macroscopic interfacial dynamics [12, 13, 

14] or are related to the contact mechanics of rough interfaces. In this study, we consider the 

thermodynamic behavior of elastomers due to friction in situations where Amontons' laws 

lose their validity. Some basic understanding of the frictional response of a viscoelastic body 

is captured from a simple model: (i) the elastomer is modeled as a Kelvin body, which is 

completely defined by a constant elastic modulus and a thermally activated viscosity, (ii) the 

undeformed surface is plain and exhibits no friction microscopically, (iii) the counter body is 

rigid and has a randomly rough, self-affine fractal surface, (iv) capillarity and adhesion are 

excluded, (v) the features are investigated in a one-dimensional substitute model. 

Although these conditions seem to simplify the situation vastly we still obtain an 

interesting, non-trivial frictional and thermodynamic behavior of the elastomer. We cannot 

claim a direct one-to-one correspondence to a full-fledged three dimensional analysis but we 

see a broad applicability of our results to one-dimensional grounds if the rules put forward in 

the method of dimensionality reduction (MDR) [15-18] are taken into account. Li et al. [19] 

provided a study of a one-dimensional rough surface in contact with an elastomer. Dimaki 

and Popov [20] investigated the temperature dependence of the coefficient of friction for 

elastomers for an indented cone. 

The aim of this note is to study the behavior of an elastomer in contact with a rough 

surface when temperature shifts in the contacts are admitted. 

The MDR maps three-dimensional frictional problems onto one-dimensional ones. 

Thereby, two different steps have to be taken. Firstly, the contact geometry of the surface 

has to be taken to a one-dimensional substitute model. Secondly, physical quantities in the 

contact have to be calculated in the model. Let us review a certain class of surfaces that 

we employ for our model building. 

1.1 Self-affine isotropic surfaces and fractal surfaces 

An arbitrary surface may be described by certain statistical key values. We want to 

mention here the root mean square (RMS) roughness 2h h    and the RMS gradient 
2( )h h     , where   denotes the ensemble average over several realizations of the 

system. Both quantities can be related to the power spectrum or autocorrelation function 

( )C q  of the surface under consideration. 

In a one-dimensional substitute model these moments of the autocorrelation function 

can be held constant from an original two-dimensional model 
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Fractal surfaces are self-affine surfaces. This means that the surface looks about the same as 

the resolution is increased or decreased. There is no natural length scale to be found in this 

kind of surfaces. Hurst exponent H is another quantity to characterize fractal surfaces 
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 2 ,fD H   (2) 

where Df  is the fractal dimension of the surface. Under a rescaling of spatial coordinate 

x  x height coordinate h changes to 
H
h. The original Hurst exponent ranges from 0 

to1. Low values of the Hurst exponent correspond to high volatility: large values of the 

quantity under consideration have a high probability to be followed by low value. This 

means that a surface with low Hurst exponent looks rather rugged. High values of the 

exponent point towards a low volatility, i.e. the values of the physical quantity have a high 

probability to be followed by another similar value. This corresponds to a smooth surface 

if height coordinates are under investigation. The range of the Hurst exponent can be 

further extended. 

One-dimensional self-affine isotropic surface h is described by a power spectrum  
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with dimensionless strength 0ĉ  and cut-off wave vectors qi and qf. 

The RMS roughness and the RMS slope of the surface are computed as 
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Eliminating strength 0ĉ , the gradient of the surface is given by 
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Dropping the requirement of the Hurst exponent being in the range [0,1] we can identify 

three different behaviors of the slope. Keeping in mind qf / qi  >> 1 
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For negative values of H, the short wavelengths dominate the slope. For values of H in the 

physically most interesting range, the slope is interpolating between the values for long 

respectively short wave vectors. Finally, for high values of the Hurst exponent the shortest 

wave number, i.e. the longest wavelength, dominates. 

For the generation of a randomly rough surface with the desired properties, we fall 

back on the Fourier transform  
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The one-dimensional Fourier coefficients of the surface are proportional to the square 

root of the power spectrum  
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This choice ensures that the requirements on the roughness and slope are satisfied. 

Note that B1D has to be symmetric about qf in order to get a real surface. The randomness 

of the different realizations of the surface is assured by uniformly distributed random 

phase . Here, phase  has to be antisymmetric about qf  to fulfill the reality condition. 

For a discrete realization, the maximal and minimal wave vectors depend on spatial step 

dx and system length L  

 / /  , 2 .f iq dx q L    (9) 

The one-dimensional surface is generated as the inverse discrete Fourier transform 

(DFT). As an example, the DFT of one-dimensional height coordinate h  is expressed as 
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In order to get a real surface, the symmetry conditions for a discrete realization 

translate into 
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We stress that there is a periodicity of L = Ndx due to periodicity feature of the DFT. 

2. MODELING 

After having described the generation of the one-dimensional substitute surface we now 

turn to the modeling of the contact itself. In the considered model, two one-dimensional 

substitute surfaces z and u are moved relative to each other with constant velocity v0. The 

surfaces are discretized and the individual sites are labeled by i = 1,…,N. In every site i there 

exists a spring damper combination. This combination is a Kelvin body as shown in Fig. 1. 
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Fig. 1 Kelvin element: Spring with stiffness k = 2dxG/(1     

in parallel with a damper dx 

It consists of a spring with stiffness k = 2 dx G/(1  , which is coupled in parallel with a 

damper with damping constantdx . The material of the original polymer is 

described by elastic modulus G and viscosity . In the one-dimensional model there exists 

no interaction between neighboring sites. Applied external normal force FN is held 

constant during the frictional process. Hence, it is a force controlled process. For simplicity, 

we employ periodic boundary conditions. One can imagine that the indenter is virtually 

infinitely many times repeated. Due to the chosen boundary conditions the set-up has spatial 

periodicity L = dx N.  

Another important ingredient in the model is the contact criterion. The surfaces are 

considered to be in contact if the coordinate of deformable surface u is larger than the one 

of rigid surface z: 

 i iz  < u .
 (12) 

From the viscoelastic model mentioned earlier, one can easily find the equation of motion 

for the Kelvin element at every site 0( )extF k u u u     for some reference coordinate 

u0. In terms of discretized variables, the force exerted at each site in contact is 
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where   G is the relaxation time of the Kelvin element (for incompressible media 

). The spring experiences a force according to the deviation from the undisturbed 

soft surface u0i = 0 while the damper exerts a force that is proportional to the rate of 

change in the deformed surface. We define  

 0 0v v
v

kdx dt Gdx

 
    (14) 

as the ratio between the time scale of motion dt = dx/v0 and the time scale of the viscoelastic 

material (relaxation) k G. Between the surfaces, a force acts according to 

viscoelastic model Eq. (13) if it is in contact. The force is set to zero if surfaces are not in 



52 R. HEISE 

contact. Negative forces are not considered since this would correspond to adhesive effects 

which we exclude from our study. 

Initially, the rigid surface described by coordinates zi is generated with a certain given 

RMS roughness h, system length L, spacing dx and Hurst exponent H. This fixes also the 

RMS gradient 
2

1
1

1/ (( ) / )
N

i i
i

z N z z dx


    and cut-off wave vectors qi and qf . Note that 

the mean of z is zero by construction. The moving rigid surface is pressed into the 

deformable surface in such a way that the given normal force is sustained. At the same 

time the periodic boundary conditions are enforced. The soft deformed lower surface is 

now described by coordinate ui. 

The situation is viewed as a stationary system so that all transient features have 

disappeared. Hence, time step dt for discretization step dx is rather a bookkeeping device. 

Side step dx is fixed as well as time step dt throughout this study. In particular, this means 

that spatial derivatives are linked to time derivatives via 

 0 .
d d

v
dt dx

  (15) 

Further on, we denote indices according to the scheme: i all sites, j sites in contact, k sites 

without contact. The one-dimensional chain can be seen in Fig. 2. 

 

Fig. 2 Chain of discretized Kelvin elements 

Imagine we ride along with the indenter to the right. One point of the surface is transferred 

to a new position. This new position of relaxing surface ui is calculated according to Eq. (13) 

without external force. In a continuous description, this leads to a simple ordinary 

differential equation 

 00 .u u u    (16) 

It is solved by 
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after some time t for an undisturbed surface at u0=0 for some constant u(0). 

In discretized coordinates, the solution relates one site to the coordinate one step to the right  
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This solution corresponds to a free evolution and relaxation of the polymer. 

For the deformable surface at a single site, four distinct possible scenarios exist: 
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(i) The first possibility is a site that is already in contact and remains so. The old 

coordinate of the element is uj+1=zj+1. It evolves freely according to Eq. (18). Its new 

coordinate fulfills  requirement uj≥ zj and hence stays in contact. The force at this site in 

contact is calculated according to Eq. (13). The coordinate of the deformable surface is 

set to the rigid one, uj=zj. 

(ii) The second possible result of the evolution of a site, which already has been in 

contact, loses its contact uj ≤ zj. The force acting at this site is set to zero, fk = 0. 

(iii) Another outcome of the evolution is that a former free site hits the rigid surface and 

thus gets into contact uj≥ zj. Again force fj in this newly established contact site is calculated 

in accordance with Eq. (13). Finally, the coordinate is set to the rigid one, uj=zj. 

(iv) The last possibility of evolution is a free contact that stays free. Its coordinate ku  

evolves according to the equation of motion Eq. (13) with external force set to zero and 

reference surface u0k=0. Eq. (18) gives the height of surface uk at this site. There is no 

force acting between the surfaces at this site, fk=0.  

A typical picture of the described situation can be found in Fig. 3. 

 

Fig. 3 Typical picture of the surfaces: Rigid rough surface (blue solid)  

and deformed elastomer (red dashed) 

Summing local forces fi over all the sites yields the total force exerted between the surfaces. 

This force should equal given normal force FN. In order to achieve this requirement, the 

coordinate of the rigid body is adjusted by an overall shift of this surface by a quantity z  

 0 .i iz z z   (19) 

The adaptation to the new equilibrium is an iterative process since the contact region 

changes as well and defines it implicitly. 
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For the computation of frictional force Fx the tangential force for all sites 

 1  i i
x i i i
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F f z f
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 
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is calculated. Remember that the sites without contact sustain no force and hence the 

frictional force equals zero in non-contact sites. 

The coefficient of friction is defined as a ratio between the tangential and the total 

normal force 
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The contact length is computed as the sum over the number of contact site times the 

spatial step 

 . cont cont
j

L dx dxN   (22) 

Another quantity of interest is the surface gradient in contact sites 
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which is a measure for the roughness that is actually experienced by the surfaces. 

2.1. Temperature dependence 

The temperature dependence of the simulated tribological contact is included in two 

ways. Firstly, the viscoelastic properties of the material may be changed due to the 

temperature rise. A detailed analysis [21] reveals the following temperature dependence. 

Suppose the elastomer can be thought of as an amorphous body consisting of molecules. 

They usually oscillate in a potential well formed by the surrounding molecules. But there is 

also the possibility of jumps whose energy is provided by thermal fluctuations within an 

activation volume. These rarely occurring jumps are the physical reason for a flow in the 

presence of shear stresses in fluids. Without shear stress, a molecule can jump in any 

direction with a probability that is proportional to a Boltzmann factor 0exp[ / ]bP U k T  for 

some temperature T, activation potential U0, and Boltzmann constant kb. In absence of a 

shear stress, there is no macroscopic motion in the fluid. When a shear stress S is imposed 

onto the system the situation changes in such a way that the potential barriers diminish in the 

direction of the shear stress by an amount SV0 for some activation volume. In the direction 

against the shear stress the potential increases by the same amount. Summarizing the 

potentials for jumps along and opposite to the shear stress we get 
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The activation volumes have the order of magnitude of an atomic volume a
3
 where a is the atomic 

radius. The rate of shear deformation is proportional to the difference in flow of the molecular flow 
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for some (frequency) constant c1. From this expression, we see a deviation from the 

behavior of Newtonian fluids. Especially for small shear stress, i.e. SV0/(kbT)<<1, we 

retain only the leading term in the Taylor expansion. Inverting the shear rate expression 
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we learn that there exists a prefactor T in addition to the thermal activation Arrhenius term 

so that the viscosity reads 
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Referring to a certain state ( the temperature dependence might be expressed as 
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where . Lyashenko et al. [22] claim that a  rise in the temperature 

might cause a shift of one decade in the frequency of the viscoelastic spectrum. Looking 

at a temperature  the activation coefficient amounts to 141 in units of kbT0. 

Popov [21] says that an increase of the temperature by 30 K leads to a diminishing of the 

viscosity to a half. This corresponds to an activation energy of 8.67 in units of kbT0 at 

. We use the latter value in our calculations. 

2.2. Dissipated power 

The temperature change originates from the dissipated power in a viscoelastic contact. 

The energy loss in the viscous part of the element leads to a rise in temperature in the 

contact. Simple considerations about the heat flow (power flow) in the contact and bulk 

give rise to a temperature field in the contact. 

In three dimensions, heat flow q in an isotropic continuum is proportional to the 

temperature gradient of temperature field T 
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 , T q  (29) 

according to the Fourier law. Proportionality constant  is the specific thermal conductivity. 

The rate of change of the temperature field is governed by the convection-diffusion equation 

 · ·
T

c c T R
t

 
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for a medium of density  and specific heat capacity c. The temporal change in temperature is 

due to the divergence of the heat flow, a convective term due to the motion of the source, and 

the heat generation from a source R. Including the Fourier equation (29) the rate of change of 

the temperature for source free materials is then described by the heat exchange equation 

 2· · · . 
T
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For a stationary situation the time derivative vanishes. Assuming a motion in x direction 

with velocity v0, i.e. v = (v0,0,0),we obtain an equation for the temperature field 

 2 0 , x

v
T T


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where   c) is the thermal conductance and 2  is the Laplace operator. Its solution 

consists of a factor that stems from the fundamental solution and a factor describing the 

motion 
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Where Q is a point source at x = 0. This solution simplifies to the original fundamental 

solution of the homogeneous Laplace equation if the exponent factor is close to unity, i.e. 

we get a constraint on the velocity 

 0 1
2
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
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for characteristic length dx. Especially, at the surface of the half-space z = 0 the solution is 
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for point-like source Q. If one considers a smeared-out source a distribution 
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leads to an isothermal plane at z = 0. This is the situation that occurs if two half-spaces are 

in thermal contact through a circular contact area of radius a in ideal contact. Then the 
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relationship between the temperature difference between the half-spaces at infinite 

distance from the contact T and entire heat flow Q through the passage is given by 

 * 4 ,Q a T   (37) 

where  is the harmonic mean of the specific thermal conductivities of the half-spaces 

1/. This picture is in accordance with a normal pressure distribution loading 

an elastic half-space and leading to a constant strain. 

Turning to a description in the one-dimensional substitute system we consider the 

surface as independent element in a Winkler foundation. The thermal conductivity of a 

single such element is expressed as 

 * . 2 dx   (38) 

Through a passage of length 2a, the amount of 
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flows in accordance with the three-dimensional result Eq. (37). The heat current through 

every element j is related to Q and to the temperature difference via 

 *2 .
Q

j T
dx

 


   (40) 

The heat flow in single element of the Winkler foundation is then given by 

 *2 .p Tdx   (41) 

Reversing this relation we obtain for the temperature change in one-dimensional substitute 

model 
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For the Kelvin model in a one-dimensional Winkler foundation, the force exerted in one 

site in contact is given by Eq. (13). The power dissipated in the contact amounts to 

 ( ) .j j j j j j jp f u k u u u     (43) 

In non-contact sites, microscopically energy is dissipated through the relaxation of the 

Kelvin element. The spring exerts a force on the damper during relaxation. The power 

dissipated in the element equals the difference of the mechanical energy stored in the spring 
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The temperature itself depends on how this heat is led away. For an element with 

thermal conductivity , 
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 (45) 

Keep in mind that the shift in temperature causes a change in the spectral behavior of the 

elastomer. This is seen in a changing viscosity and hence a shift in relaxation time i. For 

every site, viscosity i. is adapted to temperature Ti in this contact. For points in contact, the 

change of viscosity leads to a different force experienced by the surface. In this way the 

entire contact configuration has to be adjusted to the new temperature. 

 3. RESULTS AND DISCUSSION  

Numerical simulations have been carried out for different ranges of the parameters 

involved. The viscosity is chosen to be 

Pa s, the modulus G 


Pa, the thermal 

conductivity W/m/K. The normal forces are varied logarithmically in a range 

from 


N, to 20 N, the sliding velocity from 2 


m/s to 2 


m/s. The geometry is 

described by 5000 steps of with dx = 2m and a roughness h= 1m. The Hurst exponent 

is extended to a range of [-1,3]. In Fig. 4, the coefficient of friction as a function of both 

velocity and normal force is shown. The viscosity is adapted to the temperature in the 

contact sites in an iterative process. 

  

Fig. 4 Coefficient of friction normalized by the RMS slope as a function of velocity and 
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normal force in logarithmic scale at H = 0.7 

3.1. Full contact 

If the surfaces are pressed with sufficiently high normal force against each other and 

the velocity is simultaneously rather low a full contact between the surfaces is established. 

In this situation, several quantities including the temperature can be estimated analytically. 

The mathematical condition of full contact is 

 , , 1, .j ju z j N    (46) 

Therefore, in all the expressions regarding the deformable surface it can be substituted by 

the unchanged rigid one. Especially, the force in every site is given by 
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The averaging of the elastic force is introduced to avoid finite size effects and account for 

periodicity of the model. The sum of site forces sums up to the normal force  
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where 1/ j
j

N   . Hence, the mean value of the rigid profile, i.e. the indentation, is 
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The parameter 
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4

NFz F

h GLh N
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encodes the relation between indentation and roughness of the surface. We have introduced 

the dimensionless variable  
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4
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For the frictional force, one encounters the following picture 
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if one assumes that relaxation time j is approximately the same for all the sites. This is 

appropriate in the first estimate. The power in every site is found by looking at product of 

the force at this site and the rate of change of the surface 
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Translating this to a temperature shift yields 
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For the averaged temperature change, we get 
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Assuming that the temperature shift is about the same at every site jT T    and that this 

shift is small 0T T   we find an estimate for the temperature shift at full contact 
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From this expression we learn that there are several possible contributions. The first part 

of the sum in the denominator is the ratio between the typical power dissipated in the 

viscous material and the power led away. The second part gives a contribution from the 

thermal activation of the material. Depending on the choice of the parameters the 

temperature shift can be tuned. In Fig. 5, the proportionality of the temperature shift to the 

squared velocity is shown at low values of velocity. At these values the surfaces are in full 

contact. At higher velocities the number of contacts decreases until the number of 

contacts diminishes to single ones. In this region, it is more sensible to focus on the flash 

temperature in single contacts. 
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Fig. 5 Normalized shift of the temperature as a function of velocity for different Hurst 

exponents. Due to high normal force the elastomer is in full contact for low velocities. 

The slope is two. At higher velocities the contact becomes partial and the dependence 

is linear. This effect is occurs for lower Hurst exponents at lower velocities 

 

3.2. Flash temperature 

In each element, the energy dissipation leads to rise in temperature as stated above. 

For partial contact of the surfaces, the temperature will shift differently at contacting and 

non-contacting sites. Looking back at the motivation of this study we focus on the site of 

highest temperature. This temperature called flash temperature is the maximal temperature 

that we find over all sites. Certainly, it depends on the actual realization of the surface. 

Anyway, averaging over a large number of realizations (200 in our case) we find a rise of up 

to 5% of the temperature at a Hurst exponent of H = 0.7 as shown in Fig. 6.  
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Fig. 6 Normalized shift of the flash temperature as a function of normalized velocity v  

and normalized normal force F  at H = 0.7. For small velocities and forces the 

flash temperature shift is small but is enhanced for higher values of these quantities 

As can be seen above the temperature shift is proportional to the power generated in each 

element. Looking for its highest value one has to distinguish between contact and non-

contact sites. In non-contact sites the power is proportional to the difference between the 

coordinates squared. Obviously, this difference is largest when the detachment of the 

elastomer chain just occurred. The behavior of the free elastomer surface is governed by 

parameter dt/. In contact sites, the picture is different. Here, the elastomer surface 

follows the rigid profile. Hence it maps the surface topology of the rough surface into the 

dynamic behavior of the elastomer.  

From Fig. 7 we see different behavior of the flash temperature depending on the 

contact configuration. For high normal force (LHS) the contacts saturate, i.e. there is full 

contact. The flash temperature shift increases with the normal load linearly. For lower 

loads, the relative contact number depends on the Hurst exponent of the rigid surface. On 

the right hand side, the normal force is held constant. Here the number of contacts is 

constant for low velocities. For higher speeds, more contacts are broken. For the flash 

temperature this means that, after having a linear dependence on the velocity, it saturates 

further on beginning for rough surfaces with a low Hurst exponent. 

We propose the following power law dependencies of the flash temperature shift and 

the relative contacts 
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with the empirical exponents 
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Fig. 7 Relative contacts (Ncont / N, upper row) and normalized shift of the flash 

temperature (lower row) as a function of normalized normal force F   

(left, velocity constant 0.1v  ) and normalized velocity v   

(right, normal force constant 0.5F  ) for different values of the Hurst exponent  
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Fig. 8 shows the numerical fits of the slope, i.e. the exponents of the normalized 

normal force and velocity in the ranges as indicated in Fig.7.  
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Fig. 8 Numerical fits of the exponents of normalized normal force (left, velocity constant) 

and normalized velocity (right, force constant) for relative contacts (upper row) and 

normalized shift of the flash temperature (lower row) in the power law Eq.(57) as a 

function of the Hurst exponent  

The fit in the upper left corner resembles the result of Pohrt and Popov [23] for the purely 

elastic indentation. Furthermore, as already seen in Eq. (6), the most interesting range for the 

investigation of different Hurst exponents is [0,1]. For Hurst exponents up to 0, the flash 

temperature depends on the normal force with an exponent close to 0.4. In the intermediate 

range from 0 to 2, the exponent increases to 0.8. For constant forces (RHS), the flash 

temperature shift is depends on the velocity with an exponent of about 1.6 for low Hurst 

exponents. The exponent then decreases to values about 1 for Hurst exponents larger than 1. 

 4. CONCLUSIONS AND OUTLOOK 

We have found in the framework of the MDR a strong implication that we can study 

the temperature dependence in the frictional contact of an elastomer with a rough surface 

in a simple Kelvin model. We have accomplished a shift in mean temperature as well in 

the flash temperature. The shift has been explored as a power law of the dimensionless 

normal force and velocity. The numerical fits of the exponents in the power laws have 

been carried out and the corresponding dependence on the Hurst exponent proposed. 

Further research can include more realistic elastomer models and lead to the temperature 
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dependence of the coefficient of friction itself. Furthermore a reduction of the parameter 

space by dimensionless quantities is appropriate. 
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