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Abstract. It is shown how the Abel transform solution to the general axisymmetric 

normal contact problem for homogeneous and power-law graded elastic materials, 

which is paramount for the solution of different classes of tribological problems with 

the help of the method of dimensionality reduction (MDR), can be written in terms of 

explicit convolutions. These can be very efficiently evaluated with the 1D Fast Fourier 

Transform (FFT), which reduces the numerical complexity of the transformations from 

the order of N2 for the standard matrix-vector-multiplication (MVM) algorithm to the 

order of N. Convergence and performance of the proposed method are studied in detail. 

As an illustrative example a fretting wear simulation based on the new implementation 

is shown, the results of which are compared to the standard MVM implementation. 

Key words: Method of dimensionality reduction, Fast Fourier transform, Boussinesq 

problem in contact mechanics, Power-law graded materials 

1. INTRODUCTION 

The Boussinesq problem, i.e., the frictionless normal contact problem of elastic bodies, 

is one of the basic fundaments of contact mechanics. In the case of axisymmetric, convex 

contacting bodies within the half-space approximation, several qualitatively different 

classes of contact problems can be reduced to the frictionless, non-adhesive normal contact 

[1], e.g. the JKR-adhesive normal contact [2] the tangential contact in Cattaneo-Mindlin 

approximation ([3, 4]) or – based on the correspondence principle between boundary value 

problems of linear elasticity and linear viscoelasticity – the normal contact of viscoelastic 

bodies ([5]). 

The solution to the general axisymmetric Boussinesq problem for homogeneous 

materials was first discovered by Schubert [6]. A very clear and convenient interpretation of 

the solution is given by the method of dimensionality reduction (MDR, [7]); the solution 
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consists of a series of Abel-like integral transformations, which will be given in detail 

below and whose numerical implementation in terms of matrix-vector-multiplications 

(MVM) is straight-forward and usually does not pose severe problems [8].  

However, the computational complexity of the MVM is of the order of N2, where N 

denotes the number of elements/nodes used for the numerical transformations. If the 

spatial resolution needs to be very high, or the transformations need to be executed very 

often, e.g., for the simulation of fretting wear [9] or other highly transient phenomena, 

this complexity might still lead to undesirably high computational costs. On the other 

hand, as will be shown below, the transformations can be written in terms of simple 

convolutions, whose numerical implementation in one dimension can be accelerated with 

the (discrete) Fast Fourier Transform (FFT). The 1D-FFT reduces the numerical complexity 

to the order of N (omitting logarithmic factors). Therefore, in the present manuscript it will 

be shown, how the general solution to the axisymmetric Boussinesq problem (in its MDR 

interpretation) can be obtained extremely fast based on the 1D-FFT.  

For homogeneous materials this is done in Section 2. Nevertheless, the MDR has also 

been extended to explicitly incorporate contacts of functionally graded materials (FGM). 

Within an FGM, the mechanical properties vary continuously over the volume, the 

material is inhomogeneous. Examples are hardened surfaces as well as diverse biological 

and biotechnological systems such as bones, joints or their artificial variants, adhesive 

devices (e.g., on the feet of geckos) and cell membranes [10]. One of the most important 

classes of FGM are materials in which the elastic modulus E varies with the depth z. Over 

time, different concrete functions E = E(z) have been considered (see e.g. the treatise by 

Selvadurai [11]); the only case that allows a largely analytical treatment seems to be the 

power law E ~ zk.  

The solution to the axisymmetric Boussinesq problem for power-law graded materials 

stems from Giannakopoulos & Suresh [12] and Jin et al. [13]. In the latter work as well as by 

Chen et al. [14] also the respective JKR-adhesive problem was solved. The implementation of 

these solutions into the framework of the MDR has been demonstrated by Heß [15]. 

Moreover, tangential contact problems of power-law graded materials can, within the 

Cattaneo-Mindlin approximation, be analysed with the MDR [16]. As the correspondence 

principle applies to viscoelastic graded materials, if the spatial and temporal variations of 

the moduli are separable [17], also contacts of viscoelastic power-law graded materials can 

be studied within the framework of MDR [18]. This is particularly interesting for biological 

graded materials, since these usually have visco- or poroelastic properties [10].  

The axisymmetric normal contact solution for power-law graded materials is most 

conveniently formulated in terms of generalized Abel transforms – the homogeneous case 

is, of course, always included as a limiting case, if the exponent k of the power-law 

equals zero – which can also be written as explicit convolutions and thus very efficiently 

evaluated by the 1D-FFT, as will be shown in Section 3. The application of this method 

for the simulation of fretting wear can be very fruitful in several applications, as it has 

been demonstrated that graded materials can offer a solution to the wear-fatigue dilemma 

in fretting [19]. Finally, Section 4 is devoted to discussions and conclusive remarks.  
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  2. TRANSFORMATIONS FOR HOMOGENEOUS MATERIALS 

2.1. Profile Transformation 

Consider a rotationally symmetric rigid indenter with the convex profile f(r), that is 

pressed into an homogeneous, isotropic, linearly elastic half-space with the effective 

Young’s modulus E* = E/(1–υ2), with Young’s modulus E and the Poisson ratio υ (the 

determination of f and E* for the contact of two elastic bodies is elementary and can be 

found in any textbook on contact mechanics [1]). Then, the contact solution is most 

conveniently formulated in terms of the equivalent profile [1] 
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For example, the function g will give the relations between the macroscopic contact 

quantities – contact radius a, indentation depth δ and normal force FN [1] 

 
* *

0

( ), 2 2 ( )d .
a

Ng a F E a E g x x= = −     (2) 

To write the transform (1) as an explicit convolution, following Bracewell [20] we 

introduce the substitutions 

 2 2 ˆ ˆ: , : , ( ) ( ), ( ) ( ).x r f r f G x G= = = =      (3) 

Note that the function g will be given by the scaled derivative 
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After substitution and integration by parts one obtains 
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where the prime denotes the first derivative with respect to the given argument. The last 

integral shall be evaluated numerically on equidistant one-dimensional arrays, 
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where N is the number of elements and L is the length of the simulation area for the 

spatial coordinates x and r. Note that the discretization is equidistant in the squares of the 

spatial coordinates. Applying the trapezoidal rule, it is (by convention the sum over an 

empty set shall be zero instead of ill-defined) 
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To demonstrate the performance advantage of the 1D-FFT, the sum in the last equation 

has been evaluated both with MVM and as an FFT-accelerated convolution. The calculation 

time for the pure transformation step (without build-up of a priori known matrices or 

vectors) as a function of the number of array elements N is shown in Fig. 1 in double-

logarithmic scale. While the absolute value for the calculation time is not too relevant, as it 

depends on the computational setup, it can be easily seen, that the numerical complexity of 

the MVM is of the order of N2, while the FFT complexity only increases with N. The scatter 

in the calculation time for the FFT is probably due to performance variance of the FFT 

depending on N.  

Note that the numerical error mainly originates from the discretization and the trapezoidal 

rule. Therefore, when comparing the MVM and FFT solutions with analytical solutions, both 

variants exhibit the same convergence behaviour. 

 

Fig. 1 Comparison of the calculation time for the transformation step (7) with matrix-

vector-multiplication (MVM) and as a FFT-accelerated convolution, depending on 

the number of array elements used for the transformations. 

2.2. Transformation of Local Displacements 

Several classes of tribological problems can already be solved with the MDR only 

based on the one transformation given in the previous subsection, as the relations between 

the macroscopic contact quantities (contact radii, forces, and macroscopic displacements) 

are the same in the MDR model as in the axisymmetric original system [7]. This, e.g., 

already allows the extensive study of different classes of dynamic contact problems, like 

impacts, with the MDR [21]. However, local quantities, i.e., local displacements and contact 

stresses, do not exist explicitly within the MDR model but must obtained from the respective 

MDR quantities by yet different integral transforms. 

The local displacements (both normal and tangential) in the axisymmetric original 

system, u(r), and its MDR image, U(x), are connected via the transform [1] 
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Note that formally this is also the inverse transform to Eq. (1), to obtain the axisymmetric 

profile f from the equivalent profile g. Introducing 

 ( ) : ( ) (0),U x U x U= −   (9) 

and the substitutions 

 ˆˆ( ) ( ), ( ) ( ),u u r U U x= =    (10) 

one obtains 
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Now, there are (among others) two ways to integrate this expression by parts, 
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Obviously, the second variant has several disadvantages: the occurring limit value must 

exist and β(0)  should be finite for the trapezoidal rule to be applicable without problems 

(that is e.g. not the case if U(x) is parabolic); however, the remaining integral in Eq. (13) 

is a convolution which can be evaluated once again very efficiently with the 1D-FFT. On 

the other hand, if the given restrictions are not met, a matrix-vector-multiplication based 

on the less restrictive Eq. (12) will be preferable. 

2.3. Transformation between Line Loads and Stresses 

The line loads in the MDR model, q(x), and the contact stresses in the axisymmetric 

original, σ(r), are connected via the Abel inverse transform [1] 
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Note that, once again, this transform is valid for both the normal and the tangential 

stresses or line loads. Introducing the usual substitutions, 

 ˆ ˆ( ) ( ), ( ) ( ),r q x q= =      (15) 

integrating by parts, 
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and discretizing based on Eq. (6) and the trapezoidal rule, one obtains 
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The remaining sum will again be evaluated with the 1D-FFT. 

In Fig. 2 the results of a convergence study for that algorithm with an analytical solution, 
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are given. The mean relative error (the star denotes the analytical solution) 
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is shown as a function of the number of elements used for the transformation in double-

logarithmic scale. All derivatives were determined by second-order finite differences. 

The convergence is obviously fast and stable. 

 

Fig. 2 Convergence study for the mean relative error depending on the number of array 

elements for the FFT-based implementation of the discrete transform (17). 

3. TRANSFORMATIONS FOR POWER-LAW GRADED MATERIALS 

In this section the convolution formulation of the relevant transformations is shown 

for power-law graded materials. Naturally, all previous results for homogeneous media 

are recovered, if the exponent k of the power-law of the elastic grading equals zero. 
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3.1. Profile Transformation 

For inhomogeneous materials with an elastic grading in the form of a power-law the 

profile transformation between the axisymmetric profile f and the profile g reads [1] 
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Introducing the same substitutions as in Eq. (3) we obtain 
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With the same discretization as in Eq. (6) and the trapezoidal rule we finally arrive at 
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the sum contribution of which is a discrete convolution, which once again can be efficiently 

evaluated with the 1D-FFT. 

3.2. Transformation of Local Displacements 

The transformation rule for the local displacements in the MDR model and the original 

axisymmetric system in the case of power-law graded materials is given by [1] 
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Note that, once again, this formally is also the inverse transform of Eq. (20) to obtain the 

axisymmetric profile f from the profile g. With the same procedure as in subsection 2.2 

we obtain two different possible formulations after integrating by parts. The generalization of 

Eq. (12) is given by 
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with the hypergeometric function 2F1. The alternative, more restrictive formulation, which 

on the other hand includes an explicit convolution, i.e., the generalization of Eq. (13), reads 



812 E. WILLERT 

 

1 1

10
0

1

2 ( )
ˆ( ) (0) cos lim ( ) ( ) d ,

2

ˆd ( )
( ) : .

d

k k

kx

k

k U x
u U

x

U

− −

−→

−

   
= + − + −   

    

 
 =
  





      




 

 

  (26) 

The discretization procedure for Eq. (26) works completely analogous to the previously 

showed one and shall therefore be omitted here for brevity. 

In Fig. 3 the results of a convergence study for that algorithm with an analytical solution, 
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are shown. The exponent of the power-law was chosen to be k = -0.5 (note that the value of k 

has practically no influence on the convergence behaviour). The mean relative error (defined 

as before) is shown as a function of the number of elements used for the transformation in 

double-logarithmic scale. All derivatives were determined by second-order finite differences. 

The convergence is stable but slower than the one for the pressure transform in Fig. 2, the 

gradient (in double-logarithmic terms) of the curve in Fig. 3 is close to minus one. 

 

Fig. 3 Convergence study for the mean relative error depending on the number of array 

elements for the FFT-based implementation of the transform (26) of the local 

displacements for power-law graded materials. 

3.3. Transformation to Obtain Stresses  

For power-law graded materials it is unfortunately not that easy to directly transform 

between the line loads in the MDR model and the contact stresses in the axisymmetric 

system. However, in the elastic case, transformations exist between the local displacements 

in the MDR system and the contact stresses. For example, the pressure distribution is [1] 
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with a lengthy constant cN, which can be found in the respective literature [1] and which 

reduces to E* in the homogeneous limit, and a similar transform exists for the determination of 

the frictional shear stresses in the elastic tangential contact [1].  

After completely the same procedure as in subsection 2.3, the discretized pressure 

distribution, i.e., the generalization of Eqs. (17), is given by 
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4. EXEMPLARY FRETTING WEAR SIMULATION 

Let us demonstrate the application of the proposed method to a simple fretting wear 

simulation. Fretting is a phenomenon that occurs in dry, partial slip, oscillating contacts; 

it causes both wear and fatigue and, despite its high localization, is highly relevant for the 

lifetime of various tribological systems in technology and biology [19]. 

Consider the following contact situation: an initially parabolic indenter with the radius 

of curvature R is pressed into a half-space (which of the bodies is elastically deformable, 

does not actually matter) by a constant indentation depth d. Moreover, the contact experiences 

small tangential oscillations with a displacement amplitude uA. These oscillations shall be too 

small to cause gross sliding of the contacting bodies; however, due to the partial slip in the 

contact there will be wear, which can be modelled by the Archard law; as the wear will 

happen on a much larger timescale than the period of one fretting oscillation, we can treat 

one fretting cycle as the time step for the wear simulation. Hence, the local change of 

profile during one fretting cycle is given by [9] 

 wear

0

( ; ) ( ; ) ( ; ),
k

f r t p r t u r t = 


  (30) 

with the wear coefficient kwear, the hardness of the worn body σ0 and the slip displacement 

distribution Δu, which can be calculated analytically, as is shown in another manuscript 

[22] by the author. Therefore, the wear simulation only requires the two-step transformation f 

→ g – see Eq. (1) – and g → p – see Eq. (28) with k = 0 – in every fretting cycle. 

In Fig. 4 the results for the time-evolution of the worn profile for different numbers of 

normalized fretting cycles are shown in normalized variables. The characteristic number 

of fretting cycles is given by [9] 
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with the initial normal force F0. The number of elements was chosen to be N = 2001. The 

results on the left have been obtained with the standard matrix-vector multiplication 

procedure; the results on the right were determined with the FFT-based implementation 

proposed in the present manuscript. There are no notable differences between both 

variants. However, the FFT-based implementation operates faster by a factor of five. 
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Moreover, this speed advantage of the new implementation obviously increases, if more 

elements are used for the transformation to obtain a finer resolution. 

 
 (a) (b) 

Fig. 4 Time-evolution of the worn profile f, normalized for the fixed indentation depth d, 

as a function of the radial coordinate r, normalized for the initial contact radius a0, 

for tangential fretting wear of an initially parabolic indenter and different numbers 

of normalized cycles, N/N0. The dashed black line denotes the limiting no-wear profile 

[23]. (a) Results for the semi-analytic method with matrix-vector-multiplication (b) 

Results for the semi-analytic method accelerated by the FFT 

5. CONCLUSIONS 

It has been shown, how the Abel-like integral transform solution to the general 

axisymmetric Boussinesq problem can be written in terms of real convolutions to enable the 

evaluation of the integral transforms based on the 1D-FFT. Both elastically homogeneous 

materials and those with an elastic grading in the form of a power-law were considered. 

While the convolution formulation works perfectly for the profile transformation and the 

determination of the contact stress distribution, it is significantly more restrictive than the 

standard formulation in case of the determination of the local displacement distribution. 

Moreover, it was demonstrated that the FFT-based solution operates faster than the standard 

formulation, if the number of array elements exceeds 103 (obviously, the advantage of the 

FFT will grow, if the number of array elements further increases). While modern computers 

are, of course, able to quickly perform the transformations in the traditional form, there 

might be applications for which the reduction in calculation time and memory space (for a 

very fine discretization) can come in handy, if the contact simulation is part of a more global 

(hybrid) numerical routine, e.g., for the coupled analysis of wear and fatigue in fretting. 

As the main numerical issues in the transformation result from the finite difference 

derivatives and the trapezoidal rule, the FFT-based solution exhibits practically the same 

convergence and stability as the standard procedure. The FFT-formulation can be used for 

highly transient contact simulations; in this case, one, however, must keep in mind that the 

one-dimensional arrays used for the FFT are equidistant in the squares of the spatial 

coordinates; this also leads to a finer resolution at the edge of contact, which might be 

beneficial in several circumstances.  
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There exists a wide literature on the numerical implementation of the Abel transform 

and its inversion (see the review paper by Hickstein et al. [24] and the references therein), 

mainly in the framework of image processing. However, the algorithms used in that 

context are optimized to handle very noisy data and therefore prioritize stability over 

efficiency. This is usually not necessary in the framework of axisymmetric contact mechanics. 
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