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Abstract. In this paper, the 2D lateral vibration analysis of a rotating cracked beam as 

a rotary structure is investigated through the Homotopy perturbation analysis and 

compared with the numerical Newmark-beta (Nβ) algorithm. The structure and crack 

are modeled as the Euler-Bernoulli (EB) theory and simple torsional spring, 

respectively. The nonlinear equations of motion are derived using Galerkin and the 

Assumed Mode Method (AMM). The system’s stability is analyzed through phase plane 

and time response for different angular velocities of the base, initial values, external 

disturbances, crack stiffness, and locations. A comparative study presents simulation 

results for free (first nonlinear frequency) and forced vibration. It is shown that the 

proposed semi-analytical approach is beneficial as it provides a benchmark for a more 

precise analysis and further investigation of cracked rotary structures.  

Key Words: Assumed Mode, Crack, Homotopy Perturbation, Newmark-beta, 
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1. INTRODUCTION 

Dynamic modeling and vibration analysis of rotating structures, including rotor 

blades, helicopters, flexible spacecraft, flexible link manipulators, wind turbines, etc. (for 

aviation, space, and power generation industries), have been extensively studied. 

However, they neglect some concerns or factors using approximations in the modeling 

procedure. Several studies have been concerned with getting simplified solutions for a 

free and forced vibration analysis of rotating structures [1-3]. These approaches reduce 
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computational actions and degrees of freedom, while the accuracy incorporates the 

nonlinear behavior of systems remains. One of the common structural nonlinearity 

sources is caused by cracks [4, 5]. The structural members, particularly rotating 

structures, may experience internal/external disturbances that may result in structural 

cracks. The stiffness of the cracked structure is reduced locally; as a result, the stability 

and dynamic behaviors of the system are affected by crack characteristics and location. 

Therefore, exact modeling of the defected structure is of great significance in predicting 

stability, vibration behavior, and structural health monitoring [6-8]. Numerous research 

studies exist on the dynamic response of structures, including cracks [9-11]. This article 

focuses on cracked and healthy structures with rotating bases. 

The rotating EB beam with a crack at its edge considering centrifugal forces as an 

additional stiffness is analyzed and modeled by Yashar et al. [12]. They investigated the 

natural frequencies and the vibration modes along the flap and chord of the cracked 

rotary beam using Rayleigh-Ritz and FEM. An analytical method for the free vibration 

analysis of the rotating cracked Functionally Graded Materials (FGM) structure is 

investigated by Wei et al. [13]. The advantage of the proposed method is that the 

eigenvalues can be extracted with the desired number of cracks. The classical Rayleigh-

Ritz method is used to investigate the effects of angular velocity, crack depth, and 

location, on nonlinear bending vibrations of large-amplitude rotating Timoshenko beam 

considering the rotational axial stiffness [14]. The crack is modeled as a torsional spring 

that divides the beam into two sections.  

The Ritz and the differential quadrature approaches are applied to investigate the 

effects of crack characteristics and material properties on the linear and nonlinear 

frequency of the FGM based on the Timoshenko beam with different boundary 

conditions by Kitiporancha et al. [15]. Afshari et al. investigated the vibration modeling 

of the EB beam with continuous crack (not as a discontinuous torsional spring) in the 

presence of piezoelectric (PZT) patches. They analyzed the crack growth by applying the 

PZT function to the structure [16]. 

A quadratic B-spline FEM and Galerkin methods are used to study the free vibrations 

of the rotating EB beam [17]. Latalski et al. studied bending-twisting vibrations of the 

rotating thin-walled composite structure attached to a hub [18]. In this study, the system’s 

partial differential equations and mathematical model are derived considering rotational 

inertia, material anisotropy, and transverse shear and reduced to ordinary differential 

equations by the Galerkin approach.  

Zeng et al. analyzed axial-torsional, flap-wise-chord-wise coupled vibrations of a 

rotating pre-twisted beam using FEM and Hamiltonian approaches [19]. Gawryluk et al. 

investigated the dynamical response of a rotating composite beam with a constant 

velocity caused by harmonic excitation from a Macro Fiber Composite (MFC) motor by 

FEM [20]. In this approach, the PZT materials have been used as an additional excitation 

source. 

Dibble et al. analyzed the aero-elastic eigenvalues of a rotating blade under a variable 

angular velocity and compressive loading using the boundary value problem [21]. They 

investigated the effect of compressive and aerodynamic loading on the reduction of the 

rotary blade velocity. The Rayleigh-Ritz approach is utilized to study the effects of 

angular velocity, hub radius, and other characteristics of a pre-twisted rotating composite 

blade on vibrational behavior (natural frequencies and mode shapes), considering the 

effects of Coriolis and centrifugal forces [22]. A dynamic analysis of rotating (EB) beam 
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using power series solution and numerical simulations is done considering tapering 

effects [23]. Different researchers also investigated the dynamic analysis of rotor blades 

as coupled rigid-flexible systems [24, 25].  

Several analytical solutions have been presented for nonlinear vibration analysis of 

non-rotating structures. Using a nonlocal strain gradient theory, nonlinear vibration, 

bending, and buckling of functionally graded Nano beams on an elastic foundation are 

investigated [26]. Sedighi et al. propose a parameter expansion method (PEM) for an 

exact nonlinear vibration analysis of a buckled beam considering dead zone boundary 

conditions [27].  

As can be seen from the literature, much less research on analytical approaches for 

vibration analysis of cracked rotating structures has been reported compared to the 

numerous numerical investigations of such systems. On the other hand, it is required to 

precisely study the effects of significant parameters on the dynamic behavior of nonlinear 

systems. The problem can be easily handled by driving analytical models and solving 

approaches, especially for complex multi-body dynamics. Therefore, new methods have 

been proposed to deal with nonlinear problems such as Hamiltonian [28], energy 

balanced [29], multiple scales [30], differential transform method [31], variation [32], 

and homotopy perturbation approaches [33, 34]. The Homotopy Perturbation Method 

(HPM) is the one that provides remarkably fast convergence with high accuracy in series 

solutions for highly nonlinear systems and is not restricted by the assumption of a small 

number that existed in conventional perturbation approaches [35-37]. Essentially, this 

approach is a hybrid of the traditional perturbation and homotopy approaches, which 

have been successfully applied to nonlinear oscillations, wave, integral, heat 

conduction/convection/radiation equations, dispersion equations, etc. There are several 

approaches with the same characteristics, such as modified HPM [38, 39], global error 

minimization method [40], book-keeping parameter perturbation method [41], energy 

balance method [42], and He’s frequency formulation [43]. 

This study proposes a new methodology for free/forced vibration and stability 

analysis of a rotating cracked structure (a flexible cantilever beam attached to the rotating 

hub considering centrifugal stiffening effects) using a high-deformation homotopy 

perturbation approach (a semi-analytical method).The nonlinear partial equations of the 

motion of the system applying the Galerkin method lead to a nonlinear second-order 

ordinary differential equation (NODE). Next, a semi-analytical technique is developed to 

establish a more precise and reliable solution for the system's nonlinear natural 

frequencies and time response to study different parameter effects on the stability 

analysis of cracked rotating structures. The main contributions are prepared so that the 

2D coupled dynamic equations of the motion of a rotating elastic cracked beam are 

formulated considering centrifugal stiffness while HPM (with high-order deformation 

configuration) with second-order approximation is constructed to solve the problem. The 

proposed approach serves as the foundation for generalizing and implementing the HPM 

for a broader class of structural dynamics problems referred to as rigid-flexible body 

problems. 

This paper is organized as follows: The dynamic equation of the motion of the 

rotating cracked structure is derived in Section 2 and solved by a high-order deformation 

HPM in Section 3. In Section 4, numerical and analytical simulations are given and 

compared for verifications. Finally, in Section 5, the conclusions are drawn. The 

predefined styles are to be used.  
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2. GOVERNING EQUATIONS OF MOTION 

The cracked rotating-beam configuration is shown in Fig. 1. The structural model is 

considered an EB isotropic and uniform cantilevered beam with density ρ, length L, 

cross-section area A, modulus of elasticity E, and a single-axis (about Z-direction) 

rotating hub with an angular velocity . The crack is assumed to be perpendicular to the 

beam's surface and open at all times. It appears as a discontinuity that affects the 

structure's local stiffness, the same as a mass-less torsional spring (with stiffness k). 

 

Fig. 1 Rotating cantilevered cracked structure 

The three-dimensional (3D) displacement field for the EB beam is considered as: 

 , ,x y zu u zw y u u w        (1) 

Considering that large deformations involve nonlinear problems, the displacement 

strains are expressed as: 

  , , , ,

1
, , , , ,

2
ij i j j i i k j ku u u u i j k x y z      (2) 

Considering u=0 in ux displacement field, using the energy approach, the equations of 

the motion can be obtained by the Hamilton principle described by [44]: 
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where T, U, and W are the kinetic, potential, and work done by the external forces, 

respectively, written as: 
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where Wext is the work done by external forces fy, fz (such as fluid or external excitation), 

WR is the work done by the rotational forces (affecting the structure’s stiffness). Now by 

proper substitution of T, U, and W into Lagrange’s equation, applying the calculus of 

variation, the system of nonlinear differential equations of motion is obtained as: 
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 (6) 

Physically, a crack appears as a discontinuity in geometry and introduces considerable 

local flexibility. In vibration problems, the cracks can be approximated by a torsion 

spring [45]. Suppose that the crack only acts on the z-direction. It can divide the 

continuous structure into two zones. To connect these zones, considering vertical 

displacement, shear forces, and bending moments from equalities over both sides of the 

crack, we have: 

 
1 2 1 2 2 1 1( ) ( ) , ( ) ( ) , ( ) ( ) ( )w a w a w a w a w a w a kw a         (7) 

where k and a are the crack stiffness and location measured from the roots of the beam, 

respectively. It is also necessary to add four boundary conditions: 
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 (9) 

Applying B.C for W(x) and V(x), determining unknown coefficients Ai and Bi in the 

above equation, one can remove the spatial part of the equations using the orthogonality 

of the linear modes. By applying the Galerkin method, the nonlinear system of PDE 

(NSPDE) Eq. (6) is converted to nonlinear NODE as: 
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and C= αM+βK as a Rayleigh damping coefficient with positive constants α and β. It is 

noteworthy that the integral limits defined in M, G, K, and F, as well as Eq. (7), introduce 

the beam as a two-part structure separated by a crack. 

3. HOMOTOPY PERTURBATION SOLUTION (HIGH ORDER DEFORMATION) 

In this section, we discuss the idea of HPM to solve Eq. (10). Now, let: 

 ( ) ( ) ,T t u t     (15) 

Substituting Eq. (15) into the homogenous un-damped form of Eq. (10) and defining

/K M , /G M , and /F M  yields: 
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The initial solution for u(t) will be: 
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Constructing homotopy for Eq. (16), we have: 
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where ℕ, , ĥ , q, and ( )  are nonlinear operator, linear operator, auxiliary constant, 

perturbation, and auxiliary parameters, respectively. For n=1, we have: 

  1 1
ˆ( ) ( ) ( )nu h R  u  (25) 
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Substituting Eq. (24) into Eq. (21) yields: 

 2 3

1 1 0 0 0 0u u u u u     (27) 

Also, with substituting Eq. (17) into Eq. (27), we have: 

       
3

2 * * *

1 1 0 cos cos cosu u u u u        (28) 

with some simplification, Eq. (28) can be expressed as:  
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The secular term cos(τ) has to be eliminated for the next iterations, so its coefficient 

must be zero: 
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Rewriting Eq. (29) without secular terms yields: 
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Repeating for n=2 and some simplification, we have: 
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In order to obtain the time response analysis to external disturbance  0 cos   of 

system Eq. (10), reconstructing Eq. (29) as: 
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with 
Ft  , where ωF is defined as an excitation frequency. Eliminating secular terms 

and rewriting Eq. (35) as: 
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The solution is given by: 

  
*3 *3

1 0 0cos( ) cos(3
23

) cos
2 3

u u
u F F   

 
  
 

 (37) 



 Analytic Approximate Solution for Nonlinear Dynamic Analysis of Rotating Elastic Beam 9 

 

4. SIMULATION RESULTS 

The simulation results have been investigated to study the system’s performance in 

the main parameter variation. The effective parameters of the problem are: crack location, 

corresponding torsional stiffness, angular velocity, external force, and initial values. In 

each case, time responses and phase diagrams have been obtained. In the simulations, the 

physical parameters used to describe the system are considered to be: L=12 (m), E=210 

(GPa), ρ=7800(kg/m3),A=bh=(0.6×0.04) (m2). The system performance in terms of 

fundamental nonlinear natural frequency (FNNF) is analyzed for different cases. Table 1 

shows the effects of three different input base angular velocities  (rad/s) on FNNF. In 

this case, the equivalent torsion spring stiffness is k=1×106(N.mm/rad), the initial value 

is u*=0.01, and the crack location is a=6 (m) or c=a/L=0.5. 

Table 1 FNNF for different angular velocities  

Parameter =0 =5 =10 

ω 0.8216 6.661 11.5759 

Table 2 FNNF for different crack location c 

Parameter c=0.1 c=0.3 c=0.5 c=0.7 c=0.9 

ω 4.294 5.433 6.661 7.373 8.169 

Table 3 FNNF for different crack stiffness k 

Parameter k=∞ k=1e6 k=1e5 

ω 7.187 6.661 4.663 

 
Moreover, the effects of crack characteristics on FNNF are shown in Tables 2 and 3, 

respectively. Clearly, with the increase in the angular velocity crack stiffness, the FNNF 

of the cracked and the uncracked beam becomes closer to each other. In addition, for 

cracks near the clamped boundary, the FNNF value is decreased. It can also be found 

that, for fixed crack properties, the FNNF increases with increasing angular velocity due 

to the centrifugal stiffness. 

In the following, a comprehensive parameter analysis was performed to examine how 

the initial value, hub rotational speed, crack stiffness and crack location affect the free 

and force vibration responses of the system analytically and numerically. In order to 

demonstrate the effectiveness of the proposed approach, a comparison is carried out 

between HPM with high deformation and the Runge-Kutta (4th order) numerical 

approach. It can be seen that both methods behave similarly, with a slight deviation 

observed at higher deformation rates. 

The system performance in the case of free vibration phase diagrams is illustrated in 

Figs. 2-5. In order to verify the accuracy of the HPM, the results are compared with the 

Nβ algorithm. As shown in Fig. 2, the system's stability is preserved for all prescribed 

initial values. Only the increase in amplitude can reduce the stability conditions, which 

means the radius of the circles (phase portraits) increases. The dimensions of circular 

patterns are associated with the energy equilibrium of the system. Thus, as the system's 

rigidity increases, each loop's size decreases. 
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Fig. 2 Phase portrait for different u* (free vibration) 

 

Fig. 3 Phase portrait for different  (free vibration) 

From Fig. 3, the circular pattern of the non-rotating structures strongly becomes 

elliptic by increasing the angular velocity of the base. Hence with an identical value in 

the vibration amplitude, the rates are sharply reduced, which indicates an increase in 

rotational stiffness of the system. This happens for other cases where the crack stiffness 

increases and the crack moves towards the structure's tip at a lower rate, as shown in Figs 

4 and 5. Moreover, a relatively acceptable correspondence is observed between HPM and 

Nβ. 
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Fig. 4 Phase portrait for different c (free vibration) 

 

Fig. 5 Phase portrait for different k (free vibration) 

The simulations of forced vibration in time response (tip deflection) and phase 

diagrams are compared in Figs. 6-9. Similar to free vibration, the force vibration 

responses in phase diagrams are compared with Nβ, and again, a good agreement is 

observed. 

It is worth noting that a general response for systems with force vibration is periodic 

curves with finite cycles, in which the period corresponds to the excitation type. The 
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effect of different parameters on the stability and performance of the system is 

investigated. As for the free vibration analysis, the most prominent parameter which 

affects the system performance in the presence of external disturbance is the angular 

velocity and the disturbance amplitude (Figs. 6 and 7), so that the non-rotating structure 

has larger tip velocities of the order of ~3.5 times compared to the rotating cases. On the 

other hand, by increasing the angular velocity to =5, we face an increase in the 

amplitude of the oscillations. However, there is a significant reduction in the tip 

amplitude and its rate as the base angular velocity reaches =10. 

 

 

Fig. 6 Forced vibration response to F0, a) Phase portrait b) Tip displacement 

a) 

b) 
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Fig. 7 Forced vibration response for different , a) Phase portrait b) Phase diagram 

(magnified) c) Tip displacement 

a) 

b) 

c) 
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Fig. 8 Forced vibration response for different c, a) Phase portrait b) Tip displacement 

It should be noted that different studies to investigate the effects of crack location and 

stiffness in the form of closed curves are shown in phase diagrams with a concentric but 

different radius. In the presence of external disturbances, as the crack gets closer to the 

base and as the crack stiffness increases, the radius increases, which provides that the 

system dynamic becomes more sensitive to parameter variations, external disturbances, 

and changes in the system stability criteria. 

One can conclude that the phase diagram of free vibration systems shows periodic 

steady-state orbits whose amplitude varies with initial conditions. In contrast, for forced 

vibration analysis, this phase diagram represents periodic orbits characterized by a period 

proportional to the harmonic excitation force. 

a) 

b) 
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Fig. 9 Forced vibration response for different k, a) Phase portrait b) Tip displacement 

5. CONCLUSIONS 

This study analyzes the free and forced nonlinear vibration of a cracked EB beam 

attached to a rotating base. It is shown that the nonlinear governing ordinary differential 

equation can be extracted from PDE and solved using the high-order deformation form of 

HPM. Comprehensive investigations based on nonlinear natural frequency, time 

response, and the phase diagram are made to analyze the system's vibration 

a) 

b) 
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characteristics and stability, considering essential parameter effects such as angular 

velocities, external disturbances, crack characteristics and initial values. It is shown that 

due to the presence of axial forces (Centrifugal forces), the stability of the rotating 

structure is increased, so it can partly cover the crack drawbacks and can be considered a 

crack property-independent problem at high angular velocities. It is concluded that the 

HPM, even with lower-order iteration, has great potential compared to numerical 

approaches such as Nβ, which proposes an analytical approximation to the solutions of 

nonlinear structural dynamics. This research may contribute to developing, 

implementing, and realizing active vibration control algorithms for rotating structures in 

future studies. Accordingly, a rotating simulator will be considered as an experimental 

test bed to verify the feasibility and accuracy of the proposed approach. 
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