FORCED NONLINEAR OSCILLATOR IN A FRACTAL SPACE
Abstract
Keywords
Full Text:
PDFReferences
Zuo, Y.-T., 2021, A gecko-like fractal receptor of a three-dimensional printing technology: A fractal oscillator, Journal of Mathematical Chemistry, 59(4), pp. 1-10.
Elias-Zuniga, A., Palacios-Pineda, L.M., Jimenez-Cedeno, I.H., 2021, Equivalent power-form representation of the fractal Toda oscillator, Fractals, 29(1), 2150019.
Tian, D., Ain, Q.T., Anjum, N., He, C-H, Cheng, B., 2020, Fractal N/MEMS: From the pull-in instability to pull-in stability, Fractals, 29(2), 2150030.
Tian, D., He, C.H., 2021, A fractal micro-electromechanical system and its pull-in stability, Journal of Low Frequency Noise, Vibration and Active Control, 40(3), pp. 1380-1386.
He, J.H., Na, Q., Chun-Hui, H., Khaled, G., 2022, Fast identification of the pull-in voltage of a nano/micro-electromechanical system, Journal of Low Frequency Noise, Vibration and Active Control, doi:10.1177/14613484211068252
Liu, C. X., 2021, Periodic solution of Fractal phi-4 equation, Thermal Science, 25(2B), pp. 1345-1350.
Wang, K.L., 2021, He's frequency formulation for fractal nonlinear oscillator arising in a microgravity space, Numerical Methods for Partial Differential Equations, 37(2), pp. 1374-1384.
Wang, K.L., Wei C. F., 2020, A powerful and simple frequency formula to nonlinear fractal oscillators, Journal of Low Frequency Noise, Vibration and Active Control, 40(3), pp. 1373-1379.
Elias-Zuniga, A., Martinez-Romero, O., Trejo, D.O., Palacios-Pineda, L.M., 2021, An efficient ancient Chinese algorithm to investigate the dynamics response of a fractal microgravity forced oscillator, Accepted in Fractals.
He, C.H., Liu, C., Gepreel K. A., 2021, Low frequency property of a fractal vibration model for a concrete beam, Accepted in Fractals.
He, C.H., Liu. C., 2022, A modified frequency-amplitude formulation for fractal vibration systems, Fractals, doi: 10.1142/S0218348X22500463
He, C.H., Liu, C., He, J. H., Shirazi, A. H., Mohammad-Sedighi, H., 2021, Passive Atmospheric water harvesting utilizing an ancient Chinese ink slab and its possible applications in modern architecture, Facta Universitatis-Series Mechanical Engineering, 19(2), pp. 229-239.
Feng, G.Q., 2021, He’s frequency formula to fractal undamped Duffing equation, Journal of Low Frequency Noise, Vibration and Active Control, 40(4), pp. 1671-1676.
Elías-Zúñiga, A., Palacios-Pineda, L.M., Jiménez-Cedeño, I.H., Martínez-Romero, Olvera-Terjo, D., 2021, Analytical solution of the fractal cubi-quintic Duffing equation, Fractals, 29(4), 2150080.
Elias-Zuniga, A., Palacios-Pineda, L.M., Martinez-Romero, O., and Trejo, D.O., 2021, Dynamics response of the forced Fangzhu devices for water collection from air, Accepted in Fractals.
He, J.H., El-Dib, Y.O., 2021, A tutorial introduction to the two-scale fractal calculus and its application to the fractal Zhiber-Shabat Oscillator, Fractals, doi: 10.1142/S0218348X21502686.
He, C.H., Liu, S.H., Liu, C., Mohammad-Sedighi, H., 2021, A novel bond stress-slip model for 3-D printed concretes, Discrete and Continuous dynamical Systems S, doi: 10.3934/dcdss.2021161
Wang, K.L., 2022, Exact solitary wave solution for fractal shallow water wave model by He’s variational method, Modern Physics Letters B, 2150602, doi: 10.1142/S0217984921506028.
Wang, K.L., 2022, Solitary wave solution of nonlinear Bogoyavlenskii system by variational analysis method, International Journal of Modern Physics B, doi: 10.1142/S0217979222500151.
Zuo, Y.T., 2021, Effect of SiC particles on viscosity of 3D print paste: A fractal rheological model and experimental verification, Thermal Science, 25(3), pp. 2403-2407.
Zuo, Y.T., Liu, H.J., 2021, A fractal rheological model for sic paste using a fractal derivative, Journal of Applied and Computational Mechanics, 7, pp. 13-18.
Zuo, Y.-T., Liu, H.-J., 2021, Fractal approach to mechanical and electrical properties of graphene/sic composites, Facta Universitatis-Series Mechanical Engineering, 19(2), pp. 271-284.
Li, X.J., Liu, Z., He, J.H., 2020, A fractal two-phase flow model for the fiber motion in a polymer filling process, Fractals, 28(4), 2050093.
Kang-Le Wang, 2022, New variational theory for coupled nonlinear fractal Schrodinger system, International Journal of Numerical Methods for Heat and Fluid Flow, 32(2), pp. 589-597.
Liu, X.Y., Liu, Y.P., Wu, Z.W., 2021, Fractal calculus for modeling electrochemical capacitors under dynamical cycling, Thermal Science, 25 (2), pp. 1317-1320.
Alghassab, M., Mahmoud, A., Zohdy, M.Z., 2017, Nonlinear control of chaotic forced Duffing and Van der Pol oscillators, International Journal of Modern Nonlinear Theory and Application, 6(1), pp. 26-37.
Zhihong, Z., Shaopu, Y., 2015, Application of van der Pol–Duffing oscillator in weak signal detection, Computers & Electrical Engineering, 41, pp. 1-8.
Gao, G., Feng, Z., 2010, First integral for the Duffing Van der Pol type oscillator, UAB Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, pp. 123–133.
Motsa, S.S., Sibanda, P., 2012, A note on the solutions of the Van der Pol and Duffing equations using a linearization method, Mathematical Problems in Engineering, 2012, 693453.
Cui, J., Liang, J., Lin, Z., 2016, Stability analysis for periodic solutions of the Van der Pol-Duffing forced oscillator, Physica Scripta, 91, 015201.
Moatimid, G.M., 2020, Stability Analysis of a Parametric Duffing Oscillator, Journal of Engineering Mechanics, 146(5), 05020001.
Wei, X., Xiang-dong, W., Guang, M., Tong, F., 2002, Principal response of Van der Pol-Duffing oscillator under combined deterministic and random parametric excitation, Applied Mathematics and Mechanics, 23, pp. 299-310.
Dao, N.V., Dinh, N.V., Chi, T. K., 2007, Van der Pol oscillator under parametric and forced excitation, Ukrainian Mathematical Journal, 59(2), pp. 215-228.
Han, X., Bi, Q., Chun, Z., Yue, Y., 2014, Study of mixed-mode oscillations in parametrically excited Van der Pol, Nonlinear Dynamics, 77(4), pp. 1285-1296.
Kovacic, I., 2013, Harmonically excited generalized Van der Pol oscillators: Entertainment phenomenon, Meccanica, 48, pp. 2415-2425.
Shen, Y., Li, H., Yang, S., Peng, M., Han, Y., 2020, Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator, Nonlinear Dynamics, 102, pp. 1485-1497.
Wu, H., Zeng, X., Liu, Y., Lai, J., 2021, Analysis of Harmonically Forced Duffing Oscillator with Time Delay State Feedback by Incremental Harmonic Balance Method, Journal of Vibration Engineering & Technologies, 9, pp. 1239-1251.
He, J.‐H., El‐Dib, Y.O., Mady, A.A., 2021, Homotopy Perturbation Method for the Fractal Toda Oscillator, Fractal Fractional, 5(3), pp. 1-8.
Gómez-Aguilar, J.F., Yépez-Martínez, H., Calderón-Ramón, C., Cruz-Orduña, I., Escobar-Jiménez, R.F., Olivares-Peregrino, V. H., 2015, Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel, Entropy, 17, pp. 6289-6303.
Yang, C-Y., Zhang, Y-D., Yang, X-J., 2016, Exact solutions for the differential equations in fractal heat transfer, Thermal Science, 20(3), pp. 747-750.
Elías-Zúñiga, A., Martínez-Romero, O., Trejo, D.O. Palacios-Pineda, L.M., 2021, Exact steady-state solution of fractals damped, and forced systems, Results in Physics, 28, 104580.
Ghaleb, A.F., Abou-Dina, M.S., Moatimid, G.M., Zekry, M.H., 2021, Analytic approximate solutions of the cubic–quintic Duffing–van der Pol equation with two-external periodic forcing terms: Stability analysis, Mathematics and Computers in Simulation, 180, pp. 129–151.
Nayfeh, A.H., 1973, Perturbation Methods, John Wiley-Interscience, New York, 425 p.
He, C.H., Liu, C., He, J.H., Mohammad-Sedighi, H., Shokri, A., Gepreel K.A., 2021, A fractal model for the internal temperature response of a porous concrete, Applied and Computational Mathematics, 20, pp. 1871-1875.
Liu, X.Y., Liu, Y.P., Wu, Z.W., 2021, Optimization of a fractal electrode-level charge transport model, Thermal Science, 25(3), pp. 2213-2220.
Liu, Y.P., Wang, C.C., Li, S.J., 2021, A fractal Langmuir kinetic equation and its solution structure, Thermal Science, 25(2), pp. 1351-1354.
Wang, K.J., 2021, Generalized variational principle and periodic wave solution to the modified equal width-Burgers equation in nonlinear dispersion media, Physics Letters A, 419(17), doi: 10.1016/j.physleta.2021.127723.
DOI: https://doi.org/10.22190/FUME220118004H
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4