EVALUATION OF INNER SHEAR RESISTANCE OF LAYERS FROM MINERAL GRANULAR MATERIALS

Szabolcs Fischer

DOI Number
10.22190/FUME230914041F
First page
Last page

Abstract


The methodologies used to assess the inner shear resistance of granular layers from minerals measured in the laboratory with and without geosynthetic reinforcing layers are described in this paper. For the measurements, a multi-level shear box is applied without considering vertical loads on the top layer. In the literature and engineering practice, an accepted calculation method for determining inner shear resistance exists. It is the shear force with linear shearing speed, primarily after a peak force value. This can be accounted for in the present case by calculating the average force value for the 40-80 mm shear range using previous scientific and research achievements. The article details each possible additional method and compares it different methods. Three granular materials, as well as six planar geosynthetics, were studied. For this purpose, the results of 216 measurements were considered and processed using 61 different shear function-qualification parameters. The calculations were performed using a simplified function fitting test and a selection process to maximize the allowable relative standard deviations. All three types of materials and four classification parameters were chosen as references for comparability. As a result, only one alternative parameter can be used to determine the reinforcing-weakening values with a maximum deviation of 5% while not producing insufficient results in the placement (ranking) of the individual granular material and geosynthetic pairings. This parameter is the area under the function (integral) calculated on the measurement graph of the 40-80 mm shear range, in kN×mm unit; it gives correct values only if the reference granular material is the considered railway ballast, the shearing plane is the geosynthetic's plane (i.e., the so-called "0‑plane"), and the reference qualification parameter is the original recommended parameter. The best relative standard deviation values were 20% and 30%.

Keywords

Planar Geosynthetic, Geogrid, Geotextile, Reinforced Granular Layer, Inner Shear Resistance

Full Text:

PDF

References


Kurhan, M., Kurhan, D., 2019, Providing the railway transit traffic Ukraine-European Union, Pollack Periodica. 14(2), pp. 27-38.

Kurhan, M., Kurhan, D., 2018, The effectiveness evaluation of international railway transportation in the direction of "Ukraine – European Union", 22nd International Scientific on Conference Transport Means 2018, Trakai, pp. 145-150.

Bokor, Z., Horvath, B., 2015, Upgrading Multilevel Full Cost Allocation: Case Transport, Acta Technica Jaurinensis, 8(4), pp. 312-319.

Gaál, B., Horváth, B., 2017, System Approach for Strategic Planning in Transport, Acta Technica Jaurinensis, 10(1), pp. 13-20.

Czére, B., 1989, A vasút története, Corvina Kiadó, Budapest, 283 p.

Lenzsér, L., Reider, L., 2015, Közlekedési alapismeretek, Műszaki Könyvkiadó, Budapest, 392 p.

www.statista.com/statistics/1255048/punctuality-regional-passenger-rail-services-europe-by-country (last access: 01.10.2023)

Fischer, S., 2012, A vasúti zúzottkő ágyazat alá beépített georácsok vágánygeometriát stabilizáló hatásának vizsgálata, PhD thesis, Széchenyi István University, Hungary, 148 p.

Fischer, S., 2017, A vasúti zúzottkő ágyazati kőanyag egyedi laboratóriumi aprózódás-vizsgálata, valamint a geoműanyaggal erősített közlekedésépítési szemcsés rétegek belső nyírási ellenállása, habilitation thesis, Széchenyi István University, 63 p.

Kampczyk, A., Gamon, W., Gawlak, K., 2023, Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics, Energies, 16(6), 2689.

Kampczyk, A., Rombalska, K., 2023, Configuration of the Geometric State of Railway Tracks in the Sustainability Development of Electrified Traction Systems, Sensors, 23(5), 2817.

Szalai, S., Kocsis Szürke, S., Harangozó, D., Fischer, S., 2022, Investigation of deformations of a lithium polymer cell using the Digital Image Correlation Method (DICM), Reports in Mechanical Engineering, 3(2), pp. 206-224.

Flammini, F. (Ed.), 2012, Railway safety, reliability, and security: Technologies and systems engineering: Technologies and systems engineering, iGi Global, Hershey, 463 p.

Blagojević, A., Stević, Ž., Marinković, D., Kasalica, S., Rajilić, S., 2020, A Novel Entropy-Fuzzy PIPRECIA-DEA Model for Safety Evaluation of Railway Traffic, Symmetry, 12(9), 1479.

https://international-railway-safety-council.com/safety-statistics (last access: 01.10.2023)

Pfaff, R., 2023, Braking distance prediction for vehicle consist in low-speed on-sight operation: a Monte Carlo approach, Railway Engineering Science, 31(2), pp. 135-144.

Macura, D., Laketić, M., Pamučar, D., Marinković, D., 2022, Risk Analysis Model with Interval Type-2 Fuzzy FMEA – Case Study of Railway Infrastructure Projects in the Republic of Serbia, Acta Polytechnica Hungarica, 19(3), pp. 103-118.

Bouraima, M.B., Qiu, Y., Stević, Ž., Marinković, D., Deveci, M., 2023, Integrated intelligent decision support model for ranking regional transport infrastructure programmes based on performance assessment, Expert Systems with Applications, 222, 119852.

Mitchell, D., Kurniawan, T., 2015, Estimating Australian commodity freight movements: A linear programming approach, Proceedings of ATRF 2015 - Australasian Transport Research Forum 2015, Sydney, 150140.

Wills-Johnson, N., Affleck, F., 2006, A problem looking for a solution or a solution looking for a problem? Economic regulation of railways in logistics chains, Proceedings of 29th Australasian Transport Research Forum, Queensland, 92670.

Danielis, R., Marcucci, E., 2002, Bottleneck road congestion pricing with a competing railroad service, Transportation Research Part E: Logistics and Transportation Review, 38(5), pp. 379-388.

Fazio, M., Borghetti, F., Giuffrida, N., Le Pira, M., Longo, M., Ignaccolo, M., Inturri, G, Maja, R., 2023, The "15-minutes station": a case study to evaluate the pedestrian accessibility of railway transport in Southern Italy, Transportation Research Procedia – Proceedings of 3rd International Conference on Transport Infrastructure and Systems, Rome, pp. 536-543.

Butko, T., Prokhorov, V., Kalashnikova, T., Riabushka, Y., 2019, Organization of railway freight short-haul transportation on the basis of logistic approaches, Procedia Computer Science – Proceedings of 2018 ICTE in Transportation and Logistics, Klaipeda, pp. 102-109.

Shkurina, L., Maskaeva, E., 2023, Methods for economic assessment of operational quality and its impact on railway delivery time, Proceedings of 2023 International Scientific Siberian Transport Forum, TransSiberia 2023, Novosibirsk, 190756.

Carteni, A., Henke, I., 2017, External costs estimation in a cost-benefit analysis: The new Formia-Gaeta tourist railway line in Italy, Proceedings of 17th IEEE International Conference on Environment and Electrical Engineering and 1st IEEE Industrial and Commercial Power Systems Europe, Milan, 128952.

He, H., Li, D.W., 2014, Research on the problems of China's railway refrigerated transport and solutions, Applied Mechanics and Materials – 3rd International Conference on Civil Engineering and Transportation, ICCET 2013, Kunming, pp. 562-566.

Pultznerová, A., Mečár, M., Šestáková, J., Hodás, S., 2022, Influence of the Condition of the Railway Superstructure on Traffic Noise on the Regional Line, Civil and Environmental Engineering, 18(2), pp. 402-407.

Közlekedési Minisztérium, 1983, Köforgalmú vasutak pályatervezési szabályzata, KÖZDOK, Budapest, 185 p.

European Committee for Standardization, 2017, MSZ EN 13803:2014, Railway applications. Track. Track alignment design parameters. Track gauges 1435 mm and wider, 98 p.

Vaszary, P., 1999, A pályaromlás elmélete, in: Mezei, I., Horváth, F. (Eds.), Vasútépítés és pályafenntartás II., Magyar Államvasutak Rt., Budapest, pp. 157-160.

Nagy, R., 2017, Description of rail track geometry deterioration process in Hungarian rail lines No. 1 and No. 140, Pollack Periodica, 12(3), pp. 141-156.

Šestáková, J., Matejov, A., Pultznerová, A., 2022, Rehabilitation of Railway Track Quality in Relation to Diagnostic Data, Lecture Notes in Civil Engineering – 30th Annual Russian-Polish-Slovak Seminar Theoretical Foundation of Civil Engineering, RSP 2021, Moscow, pp. 197-206.

Kawalec, J., 2019, Stabilisation with geogrids for transport applications – selected issues, MATEC Web of Conferences, Proceedings of International Geotechnical Symposium "Geotechnical Construction of Civil Engineering & Transport Structures of the Asian-Pacific Region", GCCETS 2018, Yuzhno-Sakhalinsk, 265, 01001.

Rakowski, Z., Kawalec, J., 2020, The technology of mechanically stabilized layers for road structures in cold regions, in: Petriaev, A., Konon, A. (Eds.), Transportation Soil Engineering in Cold Regions, Volume 2, Lecture Notes in Civil Engineering, Springer, Cham, 50, pp. 63-70.

Fischer, S., 2022, Investigation of the Horizontal Track Geometry regarding Geogrid Reinforcement under Ballast, Acta Polytechnica Hungarica, 19(3), pp. 89-101.

Kurhan, D., Kurhan, M., 2019, Modeling the Dynamic Response of Railway Track, IOP Conference Series: Materials Science and Engineering – 8th International Scientific Conference on Reliability and Durability of Railway Transport Engineering Structures and Buildings, TRANSBUD 2019, Kharkiv, 012013.

Sysyn, M., Przybylowicz, M., Nabochenko, O., Liu, J., 2021, Mechanism of sleeper–ballast dynamic impact and residual settlements accumulation in zones with unsupported sleepers, Sustainability, 13(14), 7740.

Radoicic, G., Jovanovic, M., Marinkovic, D., 2014, Non-linear incidental dynamics of frame structures, Structural Engineering and Mechanics, 52(6), pp. 1193-1208.

Liu, C., Indraratna, B., Rujikiatkamjorn, C., 2021, An analytical model for particle-geogrid aperture interaction, Geotextiles and Geomembranes, 49(1), pp. 41-44.

Qian, Y., Tutumluer, E., Mishra, D., Kazmee, H., 2018, Triaxial testing and discrete-element modelling of geogrid-stabilised rail ballast, Proceedings of the Institution of Civil Engineers: Ground Improvement, 171(4), pp. 223-231.

Kim, J.H., Kang, M., Byun, Y.-H., Qamhia, I.I.A., Tutumluer, E., Wayne, M.H., 2020, Bender Element Shear Wave Measurement Based Local Stiffness Characteristics Related to Permanent Deformation Behavior of Geogrid-Stabilized Aggregate Specimens, Geo-Congress 2020, Minneapolis, pp. 517-526.

Brown, S.F., Brodrick, B. V., Thom, N.H., McDowell, G.R., 2007, The Nottingham railway test facility, UK, Proceedings of the Institution of Civil Engineers: Transport, 160(2), pp. 59-65.

Punetha, P., Nimbalkar, S., 2021, Performance Improvement of Ballasted Railway Tracks for High-Speed Rail Operations, in: Barla, M., Di Donna, A., Sterpi, D. (Eds.), Challenges and Innovations in Geomechanics, IACMAG 2021, Lecture Notes in Civil Engineering, 126, Springer, Cham, pp. 841-849.

Strzalka, C., Zehn, M., 2020, The Influence of Loading Position in A Priori High Stress Detection using Mode Superposition, Reports in Mechanical Engineering, 1(1), pp. 91-102.

Onyibo, E.C., Safaei, B., 2022, Application of finite element analysis to honeycomb sandwich structures: a review, Reports in Mechanical Engineering, 3(1), pp. 192-209.

Amrit, Srivastava, V., Dwivedi, S., Mukhopadhyay, A., 2022, Parametric investigation of vibration of stiffened structural steel plates using finite element analysis and grey relational analysis, Reports in Mechanical Engineering, 3(1), pp. 108-115.

Kurhan, D., Fischer, S., 2022, Modeling of the dynamic rail deflection using elastic wave propagation, Journal of Applied and Computational Mechanics, 8(1), pp. 379-387.

Fischer, S., 2015, Investigation of Inner Shear Resistance of Geogrids Built Under Granular Protection Layers and Railway Ballast, Nauka Ta Progres Transportu, 5(59), pp. 97-106.

European Committee for Standardization, 2017, MSZ EN 13250:2017, Geotextiles and geotextile-related products. Characteristics required for use in the construction of railways, 43 p.

International Organization for Standardization, 2015, ISO 10319:2015, Geosynthetics – Wide-width tensile test, 14 p.

International Organization for Standardization, 2008, ISO 10321:2008, Geosynthetics – Tensile test for joints/seams by wide-width strip method, 10 p.

International Organization for Standardization, 2018, ISO 12957-1:2018, Geosynthetics – Determination of friction characteristics – Part 1: Direct shear test, 12 p.

International Organization for Standardization, 2006, ISO 13433:2006, Geosynthetics – Dynamic perforation test (cone drop test), 6 p.

Stahl, M., 2011, Interaktion Geogitter-Boden: Numerische Simulation und experimentelle Analyse, PhD thesis, Technischen Universität Bergakademie, Germany, 166 p.

European Committee for Standardization, 2002, EN 13450:2002, Aggregates for railway ballast, 35 p.

Magyar Közút Nonprofit Zrt., 2007, e-UT 06.03.52, Útpályaszerkezetek kötőanyag nélküli és hidraulikus kötőanyagú alaprétegei. Tervezési előírások, 51 p.

Magyar Államvasutak Zrt., 2020, e-VASUT 02.10.20, D.11. utasítás, Vasúti alépítmény tervezése, építése, karbantartása és felújítása, 579 p.

Deutsche Bahn AG, 2013, Ril.836, Erdbauwerke planen, bauen und instand halten, 500 p.

Magyar Szabványügyi Testület, 1989, MSZ 2509-3:1989, Útpályaszerkezetek teherbíró képességének vizsgálata. Tárcsás vizsgálat, 6 p.

Fischer, S., Szatmári, T., 2016, Investigation of the geogrid-granular soil combination layer with laboratory multi-level shear box test, Proceedings of 6th European Geosynthetics Congress, Eurogeo 6, Ljubljana, pp. 439 448.


Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4