MECHANICALLY PRESSED POLYMER-MATRIX COMPOSITES WITH 3D STRUCTURED FILLER NETWORKS FOR ELECTROMAGNETIC INTERFERENCE SHIELDING APPLICATION
Abstract
Keywords
Full Text:
PDFReferences
Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Man Hong, S., Koo, C.M., Gogotsi, Y., 2016, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353(6304), pp. 1137-1140.
Li, N., Huang, Y., Du, F., He, X., Lin, X., Gao, H., Ma, Y., Li, F., Chen, Y., Eklund, P.C., 2006, Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites, Nano letters, 6(6), pp. 1141-1145.
Al-Saleh, M.H., Saadeh, W.H., Sundararaj, U., 2013, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study, Carbon, 60, pp. 146-156.
Ha, H., Qaiser, N., Yun, T.G., Cheong, J.Y., Lim, S., Hwang, B., 2023, Sensing mechanism and application of mechanical strain sensor: a mini-review, Facta Universitatis-Series Mechanical Engineering, 21(4), pp. 751-772.
Kim, H., Qaiser, N., Hwang, B., 2023, Electro-mechanical response of stretchable pdms composites with a hybrid filler system, Facta Universitatis-Series Mechanical Engineering, 21(1), pp. 051-061.
Choi, C., Ashby, D.S., Butts, D.M., DeBlock, R.H., Wei, Q., Lau, J., Dunn, B., 2020, Achieving high energy density and high power density with pseudocapacitive materials, Nature Reviews Materials, 5(1), pp. 5-19.
Asmatulu, R., Bollavaram, P.K., Patlolla, V.R., Alarifi, I.M., Khan, W.S., 2020, Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding, Advanced Composites and Hybrid Materials, 3, pp. 66-83.
Bayat, A., Ebrahimi, M., Ardekani, S.R., Iranizad, E.S., Moshfegh, A.Z., 2021, Extended Gibbs free energy and laplace pressure of ordered hexagonal close-packed spherical particles: A wettability study, Langmuir, 37(28), pp. 8382-8392.
Choi, C., Lim, S., Yun, T.G., Marinkovic, D., Matteini, P., Hwang, B., 2024, Ag nanowire-based conductive textiles for electronic devices: an introductory review, Nano, doi: 10.1142/S1793292024300123
Thomassin, J.-M., Jérôme, C., Pardoen, T., Bailly, C., Huynen, I., Detrembleur, C., 2013, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Materials Science and Engineering: R: Reports, 74(7), pp. 211-232.
Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y., 2014, 25th anniversary article: MXenes: a new family of two‐dimensional materials, Advanced materials, 26(7), pp. 992-1005.
Qi, F., Wang, L., Zhang, Y., Ma, Z., Qiu, H., Gu, J., 2021, Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation, Materials Today Physics, 21, 100512.
Wang, L., Qiu, H., Song, P., Zhang, Y., Lu, Y., Liang, C., Kong, J., Chen, L., Gu, J., 2019, 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties, Composites Part A: Applied Science and Manufacturing, 123, pp. 293-300.
Wang, L., Chen, L., Song, P., Liang, C., Lu, Y., Qiu, H., Zhang, Y., Kong, J., Gu, J., 2019, Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application, Composites Part B: Engineering, 171, pp. 111-118.
Verma, R., Thakur, P., Chauhan, A., Jasrotia, R., Thakur, A., 2023, A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications, Carbon, 208, pp. 170-190.
Boldrin, L., Scarpa, F., Chowdhury, R., Adhikari, S., 2011, Effective mechanical properties of hexagonal boron nitride nanosheets, Nanotechnology, 22(50), 505702.
Weng, Q., Kvashnin, D.G., Wang, X., Cretu, O., Yang, Y., Zhou, M., Zhang, C., Tang, D.M., Sorokin, P.B., Bando, Y., 2017, Tuning of the optical, electronic, and magnetic properties of boron nitride nanosheets with oxygen doping and functionalization, Advanced materials, 29(28), 1700695.
Biscarat, J., Bechelany, M., Pochat-Bohatier, C., Miele, P., 2015, Graphene-like BN/gelatin nanobiocomposites for gas barrier applications, Nanoscale, 7(2), pp. 613-618.
Meziani, M.J., Song, W.L., Wang, P., Lu, F., Hou, Z., Anderson, A., Maimaiti, H., Sun, Y.P., 2015, Boron nitride nanomaterials for thermal management applications, ChemPhysChem, 16(7), pp. 1339-1346.
Kawaguchi, S., Ito, K., 2005, Dispersion polymerization, Polymer Particles, 175, pp. 299-328.
Arshady, R., 1992, Suspension, emulsion, and dispersion polymerization: A methodological survey, Colloid and polymer science, 270, pp. 717-732.
Chu, Y.Z., Hoover, M., Ward, P., Lau, K.C., 2024, First-principles study of MXene properties with varying hydrofluoric acid concentration, Iscience, 27(2), 108784.
Pahlevaninezhad, M., Sadri, R., Momodu, D., Eisawi, K., Pahlevani, M., Naguib, M., Roberts, E.P., 2024, Ammonium Bifluoride‐Etched MXene Modified Electrode for the All− Vanadium Redox Flow Battery, Batteries & Supercaps, 7(4), e202300473.
Zhang, T., Pan, L., Tang, H., Du, F., Guo, Y., Qiu, T., Yang, J., 2017, Synthesis of two-dimensional Ti3C2Tx MXene using HCl+ LiF etchant: enhanced exfoliation and delamination, Journal of Alloys and Compounds, 695, pp. 818-826.
Acres, R.G., Ellis, A.V., Alvino, J., Lenahan, C.E., Khodakov, D.A., Metha, G.F., Andersson, G.G., 2012, Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces, The Journal of Physical Chemistry C, 116(10), pp. 6289-6297.
Clogston, J.D., Patri, A.K., 2011, Zeta potential measurement, Characterization of nanoparticles intended for drug delivery, 697, pp. 63-70.
Luo, J., Tao, X., Zhang, J., Xia, Y., Huang, H., Zhang, L., Gan, Y., Liang, C., Zhang, W., 2016, Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance, ACS nano, 10(2), pp. 2491-2499.
Hou, J., Li, G., Yang, N., Qin, L., Grami, M.E., Zhang, Q., Wang, N., Qu, X., 2014, Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity, Rsc Advances, 4(83), pp. 44282-44290.
Oh, H., Kim, J., 2019, Fabrication of polymethyl methacrylate composites with silanized boron nitride by in-situ polymerization for high thermal conductivity, Composites Science and Technology, 172, pp. 153-162.
Schulz, R.B., Plantz, V., Brush, D., 1988, Shielding theory and practice, IEEE Transactions on electromagnetic compatibility, 30(3), pp. 187-201.
Joshi, A., Datar, S., 2015, Carbon nanostructure composite for electromagnetic interference shielding, Pramana, 84, pp. 1099-1116.
Iqbal, A., Sambyal, P., Koo, C.M., 2020, 2D MXenes for electromagnetic shielding: a review, Advanced Functional Materials, 30(47), 2000883.
Xu, Y., Yang, Y., Yan, D.-X., Duan, H., Zhao, G., Liu, Y., 2019, Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit, Chemical Engineering Journal, 360, pp. 1427-1436.
DOI: https://doi.org/10.22190/FUME240601038C
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4