COMPARISON OF THE EFFECT OF ELECTROPLASTICITY IN COPPER AND ALUMINUM
Abstract
Keywords
Full Text:
PDFReferences
Troitskii, O.A., 1969, Electromechanical effect in metals, Journal of Experimental and Theoretical Physics Letters, 1(10), pp. 18-22.
Okazaki, K., Kagawa, M., Conrad, H., 1978, A study of the electroplastic effect in metals, Scripta Metallurgica, 12(11), pp. 1063-1068.
Stolyarov, V., Misochenko, A., 2023, A pulsed current application to the deformation processing of materials, Materials, 16(18), 6270.
Dong, H.-R., Li, X.-Q., Li, Y., Wang, Y.-H., Wang, H.-B., Peng, X.-Y., Li, D.-S., 2022, A review of electrically assisted heat treatment and forming of aluminum alloy sheet, International Journal of Advanced Manufacturing Technology, 120(11-12), pp. 7079-7099.
Izadpanah, S., Cao, X., An, D., Li, X., Chen, J., 2023, One step forward to electrically assisted forming mechanisms and computer simulation: A review, Advanced Engineering Materials, 25(5), 2200425.
De Zutter, D., Knockaert, L., 2005, Skin effect modeling based on a differential surface admittance operator, IEEE Transactions on Microwave Theory and Techniques, 53(8), pp. 2526-2538.
Grimm, T.J., Mears, L.M., 2022, Skin effects in electrically assisted manufacturing, Manufacturing Letters, 34, pp. 67-70.
Qian, L., Zhan, L., Zhou, B., Zhang, X., Liu, S., Lv, Z., 2021, Effects of electroplastic rolling on mechanical properties and microstructure of low-carbon martensitic steel, Materials Science and Engineering: A, 812, 141144.
Pochivalov, Yu.I., 2023, Structure and properties of low-alloy steel 10G2FBYu after rolling in embossed rolls under conditions of electroplasticity, Izvestiya Ferrous Metallurgy, 66(6), pp. 659-665.
Zhan, L., Li, R., Wang, J., Xue, X., Wang, Y., Lv, Z., 2023, Thermoelectric coupling deep drawing process of ZK60 magnesium alloys, International Journal of Advanced Manufacturing Technology, 126(7-8), pp. 3005-3014.
Tang, G., Zhang, J., Yan, Y., Zhou, H., Fang, W., 2003, The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire, Journal of Materials Processing Technology, 137 (1-3 SPEC), pp. 96-99.
Lv, Z., Zhou, Y., Zhan, L., Zang, Z., Zhou, B., Qin, S., 2021, Electrically assisted deep drawing on high-strength steel sheet, International Journal of Advanced Manufacturing Technology, 112(3-4), pp. 763-773.
Yao, K.-F., Wang, J., Zheng, M., Yu, P., Zhang, H., 2001, A research on electroplastic effects in wire-drawing process of an austenitic stainless steel, Scripta Materialia, 45(5), pp. 533-539.
Li, C., Xu, Z., Peng, L., Lai, X., 2022, An electric-pulse-assisted stamping process towards springback suppression and precision fabrication of micro channels, International Journal of Mechanical Sciences, 218, 107081.
Wang, Y.-G., He, S.-R., Gu, M., Gao, F., Xiong, K.-H., 2024, Numerical analysis and springback compensation of metal bipolar plate stamping forming, Suxing Gongcheng Xuebao/Journal of Plasticity Engineering, 31(2), pp. 43-50.
Zhao, L., Chen, G., Liu, J., Wei, H., Huang, J., 2024, Effect of pulse current parameters on electroplastically assisted dry cutting performance of W93NiFe alloy, International Journal of Advanced Manufacturing Technology, 131(5-6), pp. 2123-2131.
Perkins, T.A., Kronenberger, T.J., Roth, J.T., 2007, Metallic forging using electrical flow as an alternative to warm/hot working, Journal of Manufacturing Science and Engineering, 129(1), pp. 84-94.
Perkins, T.A., Roth, J.T., 2005, The reduction of deformation energy and increase in workability of metals through an applied electric current, American Society of Mechanical Engineers, Manufacturing Engineering Division, MED, 16(1), pp. 313-322.
Dong, H., Li, X., Li, Y., Zhao, S., Wang, H., Liu, X., Meng, B., Du, K., 2023, The anomalous negative electric current sensitivity of a precipitation hardened Al alloy during electrically-assisted forming, Journal of Materials Research and Technology, 24, pp. 9356-9368.
Xu, Z., Jiang, T., Huang, J., Peng, L., Lai, X., Fu, M. W., 2022, Electroplasticity in electrically-assisted forming: Process phenomena, performances and modeling, International Journal of Machine Tools and Manufacture, 175, 103871.
Tiwari, J., Prasad, K., Krishnaswamy, H., Amirthalingam, M., 2023, Energy density to explain the ductility loss during electroplastic deformation of a dual-phase steel, Materials Characterization, 205, 113359.
Abdullina, D.U., Bebikhov, Yu.V., Tatarinov, P.S., Dmitriev, S.V., 2023, Review of recent achievements in the field of electroplastic metal forming, Basic Problems of Material Science, 20(4), pp. 469-483.
Wernicke, S., Hahn, M., Detzel, A., Tillmann, W., Stangier, D., Lopes Dias, N.F., Tekkaya, A.E., 2021, Force reduction by electrical assistance in incremental sheet-bulk metal forming of gears, Journal of Materials Processing Technology, 296(48), 117194.
Dimitrov, N., Liu, Yu., Horstemeyer, M., 2020, Electroplasticity: A review of mechanisms in electro-mechanical coupling of ductile metals, Mechanics of Advanced Materials and Structures, 29(22), pp. 1-12.
Kim, M.-J., Yoon, S., Park, S., Jeong, H.-J., Park, J.-W., Kim, K., Jo, J., Heo, T., Hong, S.-T., Cho, S.H., Kwon, Y.-K., Choi, I.-S., Kim, M., Han, H.N., 2020, Elucidating the origin of electroplasticity in metallic materials, Applied Materials Today, 21, 100874.
Li, X., Zhu, Q., Hong, Y., Zheng, H., Wang, J., Wang, J., Zhang, Z., 2022, Revealing the pulse-induced electroplasticity by decoupling electron wind force, Nature Communications, 13(1), 6503.
Krishnaswamy, H., Tiwari, J., Amirthalingam, M., 2024, Revisiting electron-wind effect for electroplasticity: A critical interpretation, Vacuum, 221, 112937.
Li, H., Jin, F., Zhang, M., Ding, J., Bian, T., Li, J., Ma, J., Zhang, L., Wang, Y., 2023, Decoupling electroplasticity by temporal coordination design of pulse current loading and straining, Materials Science and Engineering: A, 881(1-3), 145435.
Dimitrov, N.K., Liu, Y., Horstemeyer, M.F., 2022, Electroplasticity: A review of mechanisms in electro-mechanical coupling of ductile metals, Mechanics of Advanced Materials and Structures, 29(5), pp. 705-716.
Hao, S., Chu, Q., Li, W., Yang, X., Zou, Y., 2023, Effect of electropulsing treatment on the microstructure and mechanical properties of metallic materials: a review, Cailiao Daobao, Materials Reports, 37(4), 21030039.
Liu, J., Jia, D., Fu, Y., Kong, X., Lv, Z., Zeng, E., Gao, Q., 2024, Electroplasticity effects: from mechanism to application, International Journal of Advanced Manufacturing Technology, 131(5-6), pp. 3267-3286.
Jeong, H.-J., Kim, M.-J., Choi, S.-J., Park, J.-W., Choi, H., Luu, V.T., Hong, S.-T., Han, H.N., 2020, Microstructure reset-based self-healing method using sub-second electric pulsing for metallic materials, Applied Materials Today, 20, 100755.
Kim, M.-J., Lee, M.-G., Krishnaswamy, H., Hong, S.-T., Choi, I.-S., Kim, D., Oh, K.H., Han, H., 2016, Electric current–assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension, International Journal of Plasticity, 94, pp. 148-170.
Lahiri, A., Shanthraj, P., Roters, F., 2019, Understanding the mechanisms of electroplasticity from a crystal plasticity perspective, Modelling and Simulation in Materials Science and Engineering, 27, 085006.
Wang, X., Zhou, B., Huang, H., Niu, J., Guan, S., Yuan, G., 2022, Extraordinary ductility enhancement of Mg-Nd-Zn-Zr alloy achieved by electropulsing treatment, Journal of Magnesium and Alloys.
Herbst, S., Karsten, E., Gerstein, G., Reschka, S., Nürnberg, F., Zaefferer, S., Maier, H.J., 2023, Electroplasticity mechanisms in hcp materials, Advanced Engineering Materials, 25(18), 2201912.
Yin, F., Ma, S., Hu, S., Liu, Y., Hua, L., Cheng, G. J., 2023, Understanding the microstructure evolution and mechanical behavior of titanium alloy during electrically assisted plastic deformation process, Materials Science and Engineering: A, 869, 144815.
Dobras, D., Zimniak, Z., Zwierzchowski, M., Dziubek M., 2024, Effect of strain rate on the mechanical behavior of Al-Mg alloy under a pulsed electric current, Metallurgical and Materials Transactions A, 55, pp. 1284-1294.
Tiwari, J., Pratheesh, P., Bembalge, O.B., Krishnaswamy, H., Amirthalingam, M., Panigrahi, S.K., 2021, Microstructure dependent electroplastic effect in AA 6063 alloy and its nanocomposites, Journal of Materials Research and Technology, 12(3), pp. 2185-2204.
Roh, J.-H., Seo, J.-J., Hong, S.-T., Kim, M.-J., Han, H.N., Roth, J.T., 2014, The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current, International Journal of Plasticity, 58, pp. 84-99.
Jeong, H.-J., Park, J.-W., Shin, E., Woo, W., Kim, M.-J., Han, H.N., 2022, Electric current-induced precipitation hardening in advanced high-strength steel, Scripta Materialia, 220, 114933.
McNeff, P.S., Paul, B.K., 2020, Electroplasticity effects in Haynes 230, Journal of Alloys and Compounds, 829(3), 154438.
Dong, H., Zhou, H., Li, Y., Li, X., Zhao, S., Liu, X., Wang, Y., 2024, Temperature-dependent electroplasticity in the Invar 36 alloy, Journal of Materials Research and Technology, 29(25-26), pp. 3842-3848.
Yang, Z., Bao, J., Ding, C., Son, S., Ning, Z., Xu, J., Shan, D., Guo, B., Kim, H.S., 2023, Electroplasticity in the Al0.6CoCrFeNiMn high entropy alloy subjected to electrically-assisted uniaxial tension, Journal of Materials Science and Technology, 148, pp. 209-221.
Chen, C., Li, C., Li, C., Li, F., Zhang, G., Yu, G., 2022, Effect of angle between pulse current and load direction on flow stress of Ti-6Al-4V alloy under uniaxial tension, Journal of Materials Engineering and Performance, 31(11), pp. 9283-9293.
Li, X., Hong, Y., Ke, H., Zhong, L., Zou, Y., Wang, J., 2024, In situ TEM study of pulse-enhanced plasticity of monatomic metallic glasses, Journal of Materials Science and Technology, 195, pp. 208-217.
Li, X., Turner, J., Bustillo, K., Minor, A.M., 2022, In situ transmission electron microscopy investigation of electroplasticity in single crystal nickel, Acta Materialia, 223(7), 117461.
Kang, W., Beniam, I., Qidwai, S.M., 2016, In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system, Review of Scientific Instruments, 87(9), 095001.
Vu, V.Q., Prokof'eva, O., Toth, L.S., Usov, V., Shkatulyak, N., Estrin, Y., Kulagin, R., Varyukhin, V., Beygelzimer, Y., 2019, Obtaining hexagon-shaped billets of copper with gradient structure by twist extrusion, Materials Characterization, 153, pp. 215-223.
Beygelzimer, Y., Kulagin, R., Estrin, Y., Toth, L.S., Kim, H.S., Latypov, M.I., 2017, Twist extrusion as a potent tool for obtaining advanced engineering materials: A Review, Advanced Engineering Materials, 19(8), 1600873.
Xiao, X., Xu, S., Sui, D., Zhang, H., 2021, The electroplastic effect on the deformation and twinning behavior of AZ31 foils during micro-bending tests, Materials Letters, 288(7), 129362.
Li, X., Xu, Z., Guo, P., Peng, L., Lai, X., 2022, Electroplasticity mechanism study based on dislocation behavior of Al6061 in tensile process, Journal of Alloys and Compounds, 910(7), 164890.
Bao, J., Chen, W., Bai, J., Xu, J., Shan, D., Guo, B., 2022, Local softening deformation and phase transformation induced by electric current in electrically-assisted micro-compression of Ti–6Al–4V alloy, Materials Science and Engineering: A, 831, 142262.
Cao, X., An, D., Liu, Q., Chen, G., Li, X., 2024, Precipitation hardening characterization and stress prediction model in electrically-assisted Ti2AlNb uniaxial tension, Intermetallics, 167, 108214.
Li, P., Liu, L., Hu, L., Zhang, Y., Yan, S.-L., Xue, K.-M., 2023, Flow softening rules and mechanisms in Ti–6Al–4V alloy sheet during electrically assisted near-isothermal tension, Journal of Materials Science, 58(4), pp. 1925-1938.
Wu, C., Zhou, Y. J., Liu, B., 2022, Experimental and simulated investigation of the deformation behavior and microstructural evolution of Ti6554 titanium alloy during an electropulsing-assisted microtension process, Materials Science and Engineering: A, 838, 142745.
Andre, D., Burlet, T., Körkemeyer, F., Gerstein, G., Gibson, J.S.K.-L., Sandlöbes-Haut, S., Korte-Kerzel, S., 2019, Investigation of the electroplastic effect using nanoindentation, Materials and Design, 183(6), 108153.
Zhao Y.H., Liao X.Z., Zhu Y.T., Horita Z., Langdon T.G., 2005, Influence of stacking fault energy on nanostructure formation under high pressure torsion, Materials Science and Engineering A, 410-411, pp. 188 – 193.
Muzyk M., Pakiela Z., Kurzydlowski K.J., 2011, Ab initio calculations of the generalized stacking fault energy in aluminium alloys, Scripta Materialia, 64(9), pp. 916-918.
Hammer B., Jacobsen K.W., Milman V., Payne M.C., 1992, Stacking fault energies in aluminium, Journal of Physics: Condensed Matter, 4(50), pp. 10453-10460.
Dmitriev S.V., Morkina A.Y., Tarov D.V., Khalikova G.R., Abdullina D.U., Tatarinov P.S., Tatarinov V.P., Semenov A.S., Naimark O.B., Khokhlov A.V., Stolyarov V.V., 2024, Effect of repetitive high-density current pulses on plastic deformation of copper wires under stepwise loading, Spectrum of Mechanical Engineering and Operational Research, 1, pp. 27-43.
Humphreys, F.J., 2004, Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD), Scripta Materialia, 51(8), pp. 771-776.
DOI: https://doi.org/10.22190/FUME240920049M
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4