A 3-NODE PIEZOELECTRIC SHELL ELEMENT FOR LINEAR AND GEOMETRICALLY NONLINEAR DYNAMIC ANALYSIS OF SMART STRUCTURES
Abstract
Keywords
Full Text:
PDFReferences
Benjeddou, A., 2000, Advances in piezoelectric finite element modeling of adaptive structural elements: a survey, Computers and Structures, 76, pp. 347-363.
Lee, S., Cho, B.C., Park, H.C., Goo, N.S., Yoon, K.J., 2004, Piezoelectric Actuator–Sensor Analysis using a Three-dimensional Assumed Strain Solid Element, Journal of Intelligent Material Systems and Structures, 15, pp. 329-338.
Willberg, C., Gabbert, U., 2012, Development of a three-dimensional piezoelectric isogeometric finite element for smart structure applications, Acta Mechanica, 223, pp. 1837-1850.
Dvorkin, E.N., Bathe, K.J., 1984, A continuum mechanics based four-node shell element for general non-linear analysis, Engineering Computations, 1, pp. 77–88.
Huang, H.C., Hinton, E., 1986, A new nine node degenerated shell element with enhanced membrane and shear interpolation, International Journal for Numerical Methods in Engineering. 22(1), pp. 73-92.
Bletzinger, K.U., Bischoff, M., Ramm, E., 2000, A unified approach for shear-locking-free triangular and rectangular shell finite elements, Computers & Structures, 75(3), pp. 321-334.
Marinkovic, D., Köppe, H., Gabbert, U., 2006, Numerically efficient finite element formulation for modeling active composite laminates, Mechanics of Advanced Materials and Structures, 13, pp. 379-392.
Marinković, D., Marinković, Z., 2012, On FEM modeling of piezoelectric actuators and sensors for thin-walled structures, Smart Structures and Systems, 9(5), pp. 411-426.
Nestorovic, T., Shabadi, S., Marinković, D., Trajkov, M., 2014, User defined finite element for modeling and analysis of active piezoelectric shell structures, Meccanica, 49(8), pp. 1763-1774.
Zemčík, B., Rolfes, R., Rose, M., Teßmer, J., 2007, High-performance four-node shell element with piezoelectric coupling for the analysis of smart laminated structures, International Journal for Numerical Methods in Engineering, 70(8), pp. 934-961.
Yang, Lammering, R., Mesecke-Rischmann, S., 2004, Advanced Shell Element Formulations for Coupled Electromechanical Systems Fan, Proc. Appl. Math. Mech., 4, pp. 386–387.
Nguyen-Thoi, T, Phung-Van, P., Thai-Hoang, C., Nguyen-Xuan, H., 2013, A Cell-based Smoothed Discrete Shear Gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures, International Journal of Mechanical Sciences, 74, pp. 32-45.
Carrera, E., 2003, Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking, Arch. Comput. Meth. Engng, 10, pp. 215–296.
Cinefra, M., Carrera, E., Valvano, S., 2015, Variable Kinematic Shell Elements for the Analysis of Electro-Mechanical Problems, Mechanics of Advanced Materials and Structures, 22(1-2), pp. 77–106.
Cinefra, M., Valvano, S., Carrera, E., 2015, A layer-wise MITC9 finite element for the free-vibration analysis of plates with piezo-patches, International Journal of Smart and Nano Materials, 6(2), pp. 84–104.
Milazzo, A., 2016, Unified formulation for a family of advanced finite elements for smart multilayered plates, Mechanics of Advanced Materials and Structures, 23(9), pp. 971-980.
Tzou, H.S., Bao, Y., 1997, Nonlinear piezothermoelasticity and multi-field actuations, part 1: Nonlinear anisotropic piezothermoelastic shell elements, Journal of Vibration and Acoustics, 119, pp. 374–381.
Rabinovitch, O., 2005, Geometrically nonlinear behavior of piezoelectric laminated plates, Smart Materials and Structures, 14(4), pp. 785-798.
Kulkarni, S.A., Bajoria, K.M., 2007, Large deformation analysis of piezolaminated smart structures using higher-order shear deformation theory, Smart Materials and Structures, 16, pp. 1506-1516.
Lentzen, S., Klosowski, P., Schmidt, R., 2007, Geometrically nonlinear finite element simulation of smart piezolaminated plates and shells, Smart Materials and Structures, 16, pp. 2265-2274.
Klinkel, S., Wagner, W., 2008, A piezoelectric solid shell element based on a mixed variational formulation for geometrically linear and nonlinear applications, Computers and Structures, 86(1-2), pp. 38-46.
Rama, G., Marinković, D., Zehn, M., 2017, Efficient 3-node finite shell element for linear and geometrically nonlinear analysis of piezoelectric laminated structures, Journal of Intelligent Material Systems and Structures, accepted for publishing.
Marinković, D., Zehn, M., Marinković, Z., 2012, Finite element formulations for effective computations of geometrically nonlinear deformations, Advances in Engineering Software, 50, pp. 3-11.
Tiersten, H.F., 1969, Linear Piezoelectric Plate Vibrations, Springer, Plenum, New York.
Bathe, K.J., 1996, Finite element procedures in engineering analysis, Prentice Hall, Inc., Englewood Cliffs, New Jersey.
Saravanos, D.A., Heyliger, P.R., Hopkins D.A., 1996, Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates, Int. J. Solids Struct., 4, pp 359–78.
Lam, K.Y., Peng X.Q., Liu G.R., Reddy J.N., 1997, A finite-element model for piezoelectric composite laminates, Smart Mater. Struct., 6, pp. 583-591.
Zhang, S., 2014, Nonlinear FE Simulation and Active Vibration Control of Piezoelectric Laminated Thin-Walled Smart Structures, PhD thesis, Institute of General Mechanics RWTH Aachen University.
Zhang, S., Schmidt, R., Qin, X., 2015, Active vibration control of piezoelectric bonded smart structures using PID algorithm, Chinese Journal of Aeronautics, 28(1), pp. 305-313.
DOI: https://doi.org/10.22190/FUME170225002R
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4