ELASTIC DAMPER BASED ON THE CARBON NANOTUBE BUNDLE

Leysan Kh. Rysaeva, Elena A. Korznikova, Ramil T. Murzaev, Dina U. Abdullina, Aleksey A. Kudreyko, Julia A. Baimova, Dmitry S. Lisovenko, Sergey V. Dmitriev

DOI Number
https://doi.org/10.22190/FUME200128011R
First page
001
Last page
012

Abstract


Mechanical response of the carbon nanotube bundle to uniaxial and biaxial lateral compression followed by unloading is modeled under plane strain conditions. The chain model with a reduced number of degrees of freedom is employed with high efficiency. During loading, two critical values of strain are detected. Firstly, period doubling is observed as a result of the second order phase transition, and at higher compressive strain, the first order phase transition takes place when carbon nanotubes start to collapse. The loading-unloading stress-strain curves exhibit a hysteresis loop and, upon unloading, the structure returns to its initial form with no residual strain. This behavior of the nanotube bundle can be employed for the design of an elastic damper.

Keywords

Carbon Nanotube Bundle, Plane Strain Conditions, Lateral Compression, Elastic Damper

Full Text:

PDF

References


Tersoff, J., Ruoff, R.S., 1994, Structural properties of a carbon-nanotube crystal, Phys. Rev. Lett., 73, pp. 676-679.

Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E., 1996, Crystalline ropes of metallic carbon nanotubes, Science, 273, pp. 483-487.

Saether, E., Frankland, S.J.V., Pipes, R.B., 2003, Transverse mechanical properties of single-walled carbon nanotube crystals. Part I: Determination of elastic moduli, Compos. Sci. Technol., 63, pp. 1543-1550.

Rakov, E.G., 2013, Materials made of carbon nanotubes. The carbon nanotube forest, Russ. Chem. Rev., 82, pp. 538-566.

Chen, H., Roy, A., Baek, J.-B., Zhu, L., Qu, J., Dai, L., 2010, Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications, Mater. Sci. Eng. R: Reports, 70, pp. 63-91.

Bedewy, M., Meshot, E.R., Guo, H., Verploegen, E.A., Lu, W., Hart, A.J., 2009, Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth, J. Phys. Chem. C, 113, pp. 20576-20582.

Lan, Y., Wang, Y., Ren, Z.F., Physics and applications of aligned carbon nanotubes, Adv. Phys., 60, pp. 553-678.

Samsonidze, G.G., Samsonidze, G.G., Yakobson, B.I., 2002, Kinetic theory of symmetry-dependent strength in carbon nanotubes, Phys. Rev. Lett., 88, 065501.

Shenderova, O.A., Zhirnov, V.V., Brenner, D.W., 2002, Carbon nanostructures, Crit. Rev. Solid State, 27, pp. 227-356.

Yu, M.-F., 2004, Fundamental mechanical properties of carbon nanotubes: Current understanding and the related experimental studies, J. Eng. Mater. T. ASME, 126, pp. 271-278.

Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S., 2000, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, pp. 637-640.

Truong, T.K., Lee, Y., Suh, D., 2016, Multifunctional characterization of carbon nanotube sheets, yarns, and their composites, Curr. Appl. Phys., 16, pp. 1250-1258.

Yao, S., Yuan, J., Mehedi, H.-A., Gheeraert, E., Sylvestre, A., 2017, Carbon nanotube forest based electrostatic capacitor with excellent dielectric performances, Carbon, 116, pp. 648-654.

Yao, X., Hawkins, S.C., Falzon, B.G., 2018, An advanced anti-icing/de-icing system utilizing highly aligned carbon nanotube webs, Carbon, 136, pp. 130-138.

Yao, X., Falzon, B.G., Hawkins, S.C., Tsantzalis, S., 2018, Aligned carbon nanotube webs embedded in a composite laminate: A route towards a highly tunable electro-thermal system, Carbon, 129, pp. 486-494.

Yu, M.-F., Files, B.S., Arepalli, S., Ruoff, R.S., 2000, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett., 84, pp. 5552-5555.

Dhanabalan, S.C., Dhanabalan, B., Chen, X., Ponraj, J.S., Zhang, H., 2019, Hybrid carbon nanostructured fibers: Stepping stone for intelligent textile-based electronics, Nanoscale, 11, pp. 3046-3101.

Bai, Y.,, Zhang, R., Ye, X., Zhu, Z., Xie, H., Shen, B., Cai, D., Liu, B., Zhang, C., Jia, Z., Zhang, S., Li, X., Wei, F., 2018, Carbon nanotube bundles with tensile strength over 80 GPa, Nat. Nanotechnol., 13, pp. 589-595.

Qiu, L., Wang, X., Tang, D., Zheng, X., Norris, P.M., Wen, D., Zhao, J., Zhang, X., Li, Q., 2016, Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers, Carbon, 105, pp. 248-259.

Cho, H., Lee, H., Oh, E., Lee, S.-H., Park, J., Park, H.J., Yoon, S.-B., Lee, C.-H., Kwak, G.-H., Lee, W.J., Kim, J., Kim, J.E., Lee, K.-H., 2018, Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching, Carbon, 136, pp. 409-416.

Fernández-Toribio, J.C., Alemán, B., Ridruejo, Á., Vilatela, J.J., 2018, Tensile properties of carbon nanotube fibres described by the fibrillar crystallite model, Carbon, 133, pp. 44-52.

Dang, Z.-M., Yuan, J.-K., Zha, J.-W., Zhou, T., Li, S.-T., Hu, G.-H., 2012, Fundamentals, processes and applications of high-permittivity polymer-matrix composites, Prog. Mater. Sci., 57, pp. 660-723.

Bakshi, S.R., Lahiri, D., Agarwal, A., 2010, Carbon nanotube reinforced metal matrix composites - A review, Int. Mater. Rev., 55, pp. 41-64.

Dorri Moghadam, A., Omrani, E., Menezes, P.L., Rohatgi, P.K., 2015, Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene - A review, Compos. Part B: Eng., 77, pp. 402-420.

Reinert, L., Lasserre, F., Gachot, C., Grützmacher, P., Maclucas, T., Souza, N., Mücklich, F., Suarez, S., 2017, Long-lasting solid lubrication by CNT-coated patterned surfaces, Sci. Rep., 7, 42873.

Cao, A.Y., Dickrell, P.L., Sawyer, W.G., Ghasemi-Nejhad, M.N., Ajayan, P.M. 2005, Super-compressible foamlike carbon nanotube films, Science, 310, pp. 1307-1310.

Pathak, S., Kalidindi, S.R., 2015, Spherical nanoindentation stress-strain curves, Materials Science and Engineering R: Reports, 91, pp. 1-36.

Pathak, S., Cambaz, Z.G., Kalidindi, S.R., Swadener, J.G., Gogotsi, Y., 2009, Viscoelasticity and high buckling stress of dense carbon nanotube brushes, Carbon, 47, pp. 1969-1976.

Maschmann, M.R., Zhang, Q., Du, F., Dai, L., Baur, J., 2011, Length dependent foam-like mechanical response of axially indented vertically oriented carbon nanotube arrays. Carbon, 49, pp. 386-397.

Cao, C., Reiner, A., Chung, C., Chang, S.-H., Kao, I., Kukta, R.V., Korach, C.S., 2011, Buckling initiation and displacement dependence in compression of vertically aligned carbon nanotube arrays, Carbon, 49, pp. 3190-3199.

Liang, X., Shin, J., Magagnosc, D., Jiang, Y., Jin Park, S., John Hart, A., Turner, K., Gianola, D.S., Purohit, P.K., 2017, Compression and recovery of carbon nanotube forests described as a phase transition, Int. J. Solids Struct., 122-123, pp. 196-209.

Koumoulos, E.P., Charitidis, C.A., 2017, Surface analysis and mechanical behaviour mapping of vertically aligned CNT forest array through nanoindentation, Appl. Surf. Sci., 396, pp. 681-687.

Pour Shahid Saeed Abadi, P., Hutchens, S.B., Greer, J.R., Cola, B.A., Graham, S., 2013, Buckling-driven delamination of carbon nanotube forests, Appl. Phys. Lett., 102, 223103.

Silva-Santos, S.D., Alencar, R.S., Aguiar, A.L., Kim, Y.A., Muramatsu, H., Endo, M., Blanchard, N.P., San-Miguel, A., Souza Filho, A.G., 2019, From high pressure radial collapse to graphene ribbon formation in triple-wall carbon nanotubes, Carbon, 141, pp. 568-579.

Tangney, P., Capaz, R.B., Spataru, C.D., Cohen, M.L., Louie, S.G., 2005, Structural transformations of carbon nanotubes under hydrostatic pressure, Nano Lett., 5, pp. 2268-2273.

Zhang, S., Khare, R., Belytschko, T., Hsia, K.J., Mielke, S.L., Schatz, G.C., 2006, Transition states and minimum energy pathways for the collapse of carbon nanotubes, Phys. Rev. B, 73, 075423.

Shima, H., Sato, M., 2008, Multiple radial corrugations in multiwalled carbon nanotubes under pressure, Nanotechnology, 19, 495705.

Zhao, Z.S., Zhou, X.-F., Hu, M., Yu, D.L., He, J.L., Wang, H.-T., Tian, Y.J., Xu, B., 2012, High-pressure behaviors of carbon nanotubes, J. Superhard Mater., 34, pp. 371-385.

Islam, S., Saleh, T., Asyraf, M.R.M., Mohamed Ali, M.S., 2019, An ex-situ method to convert vertically aligned carbon nanotubes array to horizontally aligned carbon nanotubes mat, Mater. Res. Express, 6, 025019.

Zhang, R., Zhang, Y., Wei, F., 2017, Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications, Chem. Soc. Rev., 46, pp. 3661-3715.

Nam, T.H., Goto, K., Yamaguchi, Y., Premalal, E.V.A., Shimamura, Y., Inoue, Y., Naito, K., Ogihara, S., 2015, Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites, Compos. Part A: Appl. S., 76, pp. 289-298.

Qiu, L., Wang, X., Su, G., Tang, D., Zheng, X., Zhu, J., Wang, Z., Norris, P.M., Bradford, P.D., Zhu, Y., 2016, Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film, Sci. Rep., 6, 21014.

Qian, D., Wagner, G.J., Liu, W.K., Yu, M.-F., Ruoff, R.S., 2002, Mechanics of carbon nanotubes, Appl. Mech. Rev., 55, pp. 495-532.

Tang, J., Sasaki, T., Yudasaka, M., Matsushita, A., Iijima, S., 2000, Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure, Phys. Rev. Lett., 85, pp. 1887-1889.

Karmakar, S., Sharma, S.M., Teredesai, P.V., Muthu, D.V.S., Govindaraj, A., Sikka, S.K., Sood, A.K., 2003, Structural changes in single-walled carbon nanotubes under non-hydrostatic pressures: X-ray and Raman studies, New J. Phys., 5, pp. 143.1-143.11.

Wittmaack, B.K., Volkov, A.N., Zhigilei, L.V., 2019, Phase transformation as the mechanism of mechanical deformation of vertically aligned carbon nanotube arrays: Insights from mesoscopic modeling, Carbon, 143, pp. 587-597.

Wittmaack, B.K., Volkov, A.N., Zhigilei, L.V., 2018, Mesoscopic modeling of the uniaxial compression and recovery of vertically aligned carbon, Compos. Sci. Technol., 166, pp. 66-85.

Yakobson, B.I., Brabec, C.J., Bernholc, J., 1996, Nanomechanics of carbon tubes: Instabilities beyond linear response, Phys. Rev. Lett., 76, pp. 2511-2514.

Rafii-Tabar, H., Ghavanloo, E., Fazelzadeh, S.A., 2016, Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures, Phys. Rep., 638, pp. 1-97.

Harik, V.M., 2001, Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods, Solid State Commun., 120, pp. 331-335.

Impellizzeri, A., Briddon, P., Ewels, C.P., 2019, Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study, Phys. Rev. B, 100, 115410.

Chopra, N.G., Benedict, L.X., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A., 1995, Fully collapsed carbon nanotubes, Nature, 377, pp. 135-138.

Chang, T., 2008, Dominoes in carbon nanotubes, Phys. Rev. Lett., 101, 175501.

Ji, J., Zhao, J., Guo, W., 2019, Novel nonlinear coarse-grained potentials of carbon nanotubes, J. Mech. Phys. Solids, 128, pp. 79-104.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., 2015, Scroll configurations of carbon nanoribbons, Phys. Rev. B, 92, 035412.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., 2015, Simulation of folded and scrolled packings of carbon nanoribbons, Phys. Solid State, 57, pp. 2348-2355.

Savin, A.V., Korznikova, E.A., Lobzenko, I.P., Baimova, Y.A., Dmitriev, S.V., 2016, Symmetric scrolled packings of multilayered carbon nanoribbons, Phys. Solid State, 58, pp. 1278-1284.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., Soboleva, E.G., 2017, Graphene nanoribbon winding around carbon nanotube, Comp. Mater. Sci., 135, pp. 99-108.

Savin, A.V., Mazo, M.A., 2019, 2D chain models of nanoribbon scrolls, Adv. Struct. Mat., 94, pp. 241-262.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., 2019, Dynamics of surface graphene ripplocations on a flat graphite substrate, Phys. Rev. B, 99, 235411.

Korznikova, E.A., Rysaeva, L.K., Savin, A.V., Soboleva, E.G., Ekomasov, E.G., Ilgamov, M.A., Dmitriev, S.V., 2019, Chain model for carbon nanotube bundle under plane strain conditions, Materials, 12(23), 3951.

Paimushin, V.N., Firsov, V.A., Gyunal, I., Shishkin, V.M., 2016, Identification of the elastic and damping characteristics of soft materials based on the analysis of damped flexural vibrations of test specimens, Mech. Compos. Mater., 52, pp. 435-454.

Ponomarev, Y.K., Ermakov, A.I., Simakov, O.B., Mikhalkin, I.K., 2013, Metallic counterpart of rubber: a material for vibration and shock protection, Met. Sci. Heat Treat., 55, pp. 8-13.

Evazzade, I., Lobzenko, I.P., Saadatmand, D., Korznikova, E.A., Zhou, K., Liu, B., Dmitriev, S.V., 2018, Graphene nanoribbon as an elastic damper, Nanotechnology, 29, 215704.

Pang, H., Huang, P., Zhuo, W., Li, M., Gao, C., Guo, D., 2019, Hysteresis and its impact on characterization of mechanical properties of suspended monolayer molybdenum-disulfide sheets, Phys. Chem. Chem. Phys., 21, pp. 7454-7461.

Savin, A.V., Kivshar, Y.S., Hu, B., 2010, Suppression of thermal conductivity in graphene nanoribbons with rough edges, Phys. Rev. B, 82, 195422.

Savin, A.V., Korznikova, E.A., Krivtsov, A.M., Dmitriev, S.V., 2020, Longitudinal stiffness and thermal conductivity of twisted carbon nanoribbons, Eur. J. Mech. A-Solid., 80, 103920.

Savin, A.V., 2019, Thermal rectifiers based on asymmetric interaction of molecular chains, carbon nanoribbons, and nanotubes with thermostats, Phys. Rev. B, 10, 245415.

Shcherbinin, S.A., Semenova, M.N., Semenov, A.S., Korznikova, E.A., Chechin, G.M., Dmitriev, S.V., 2019, Dynamics of a three-component delocalized nonlinear vibrational mode in graphene, Phys. Solid State, 61, pp. 2139-2144.

Abdullina, D.U., Semenova, M.N., Semenov, A.S., Korznikova, E.A., Dmitriev, S.V., 2019, Stability of delocalized nonlinear vibrational modes in graphene lattice, Eur. Phys. J. B, 92, 249.

Savin, A.V., Korznikova, E.A., Dmitriev, S.V., 2019, Improving bending rigidity of graphene nanoribbons by twisting, Mech. Mater., 137, 103123.

Vasiliev, A.A., Dmitriev, S.V., Ishibashi, Y., Shigenari, T., 2002, Elastic properties of a two-dimensional model of crystals containing particles with rotational degrees of freedom, Phys. Rev. B, 65, 094101.

Wojciechowski, K.W., 2003, Remarks on "Poisson ratio beyond the limits of the elasticity theory", J. Phys. Soc. Jpn, 72, pp. 1819-1820.

Prudkovskiy, V.S., Iacovella, F., Katin, K.P., Maslov, M.M., Cherkashin, N., 2018, A bottom-up approach for controlled deformation of carbon nanotubes through blistering of supporting substrate surface, Nanotechnology, 29, 365304.

Liu, B., Zhou, K., 2019, Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications, Prog. Mater. Sci., 100, pp. 99-169.

Liu, B., Bai, L., Korznikova, E.A., Dmitriev, S.V., Law, A.W.-K., Zhou, K., 2017, Thermal conductivity and tensile response of phosphorene nanosheets with vacancy defects, J. Phys. Chem. C, 121, pp. 13876-13887.

Davletshin, A.R., Ustiuzhanina, S.V., Kistanov, A.A., Saadatmand, D., Dmitriev, S.V., Zhou, K., Korznikova, E.A., 2018, Electronic structure of graphene- and BN-supported phosphorene, Physica B, 534, pp. 63-67.

Bai, L., Srikanth, N., Korznikova, E.A., Baimova, J.A., Dmitriev, S.V., Zhou, K., 2017, Wear and friction between smooth or rough diamond-like carbon films and diamond tips, Wear, 372-373, pp. 12-20.

Baimova, J.A., Liu, B., Dmitriev, S.V., Srikanth, N., Zhou, K., 2014, Mechanical properties of bulk carbon nanostructures: Effect of loading and temperature, Phys. Chem. Chem. Phys. 16, pp. 19505-19513.




DOI: https://doi.org/10.22190/FUME200128011R

Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4