NUMERICAL MODEL OF A LOCAL CONTACT OF A POLYMER NANOCOMPOSITE AND ITS EXPERIMENTAL VALIDATION

Andrey I. Dmitriev

DOI Number
https://doi.org/10.22190/FUME201225007D
First page
079
Last page
089

Abstract


In the paper a model of a local contact of a polymer-based nanocomposite was developed within the method of a movable cellular automaton. The features of mechanical behavior of nanocomposite at the mesoscale level under dry sliding were studied with explicit account for the microprofile of the counterbody surface and the characteristic sizes of nanofiller. Factors that contribute to the conditions for the formation of a stable tribofilm of silica nanoparticles are analyzed. Two other parameters like sample geometry and the value of relative sliding velocity are also examined. It is shown that the thickness of tribofilm depends on stress conditions at the contact, and the friction coefficient decreases with increasing sliding velocity similar to one observed experimentally. To ensure the low friction properties of polymer nanocomposite, particles whose sizes are comparable with the characteristic size of the substrate microprofile are preferred. Results of numerical simulation are in good correlation with available experimental data.

Keywords

Modelling, Nanocomposite, Silica nanoparticles, Carbon fibers, Tribofilm, Friction coefficient, Movable cellular automata method

Full Text:

PDF

References


Vaia, R.A., Wagner, H.D., 2004, Framework for nanocomposites, Materials Today, 7, pp. 32–37.

Kotsilkova, R., Silvestre, C., Cimmino, S., 2007, Thermoset nanocomposites for engineering applications, in: R. Kotsilkova (Ed.), Thermoset nanocomposites for engineering applications, Rapra Technology, Shawbury, UK, pp. 1–12.

Tauqeer Ali, H., Akrami, R., Fotouhi, S., Pashmforoush, F., Fragassa, C., Fotouhi, M., 2020, Effect of the stacking sequence on the impact response of carbon-glass/epoxy hybrid composites, Facta Universitatis-Series Mechanical Engineering, 18(1), pp. 69-77.

Zare, Y., Rhee, K.Y., 2020, A modeling approach for young’s modulus of interphase layers in polymer nanocomposites, Physical Mesomechanics, 23(2), pp. 176–181.

Bahadur, S., Sunkara, C., 2005, Effect of transfer film structure, composition and bonding on the tribological behavior of polyphenylene sulfide filled with nano particles of TiO2, ZnO, CuO and SiC, Wear, 258(9), pp. 1411-1421.

Zhang, H., Zhang, Z., Friedrich, K., et al., 2006, Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Materialia, 54(7), pp. 1833-1842.

Hernández-Vargas, M.L., Castillo-Pérez, R., Flores-Cedillo, O., Campillo-Illanes, B.F., 2021, Modification of macromolecular dynamics in polyacrylic hybrid nanocomposite with un-treated SiO2 nanoparticles, Materials Science and Engineering B, 265, 114976.

Ragosta, G., Abbate, M., Musto, P., et al., 2005, Epoxy-silica particulate nanocomposites: Chemical interactions, reinforcement and fracture toughness, Polymer, 46(23), pp. 10506-10516.

Zhang, L., Zhang, G., Chang, L., et al., 2016, Distinct tribological mechanisms of silica nanoparticles in epoxy composites reinforced with carbon nanotubes, carbon fibers and glass fibers, Tribology International, 104, pp. 225-236.

Zhang L., Qi H., Li G., et al., 2017, Impact of reinforcing fillers’ properties on transfer film structure and tribological performance of POM-based materials, Tribology International, 109, pp. 58-68.

Zhang, G., Sebastian, R., Burkhart, T., Friedrich, K., 2012, Role of monodispersed nanoparticles on the tribological behaviour of conventional epoxy composites filled with carbon fibers and graphite lubricants. Wear, 292-293, pp. 176-187.

Zhang, G., Österle, W., Jim, B.C., Häusler, I., Hesse, R., Wetzel, B., 2016, The role of surface topography in the evolving microstructure and functionality of tribofilms of an epoxy-based nanocomposite, Wear, 364-365, pp. 48–56.

Dmitriev, A.I., Österle, W., Wetzel, B., 2015, Mesoscale modeling of the mechanical and tribological behavior of a polymer matrix composite based on epoxy and 6vol.% silica nanoparticles, Computational Materials Science, 110, pp. 204-214.

Dmitriev, A.I., Österle, 2010, Modeling of brake pad-disc interface with emphasis to dynamics and deformation of structures, Tribology International, 43(4), pp. 719-727.

Psakhie, S.G., Smolin, A.Yu., Shilko, E.V., et al., 1997, About the Features of Transient to Steady State Deformation of Solids, Journal of Materials Science and Technology, 13(1), pp. 69-72.

Czopor, J., Aniszewska, D., Rybaczuk, M., 2012, The influence of defects on strength of ceramics modeled with Movable Cellular Automata, Computational Materials Science, 51, pp. 151–155.

Shilko, E.V., Psakhie, S.G., Schmauder, S., Popov, V.L., Astafurov, S.V., Smolin, A.Yu., 2015, Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure, Computational Materials Science, 102, pp. 267–285.

Dmitriev, A.I., Häusler, I., Österle, W., 2016, Modeling of the stress–strain behavior of an epoxy-based nanocomposite filled with silica nanoparticles, Materials and Design, 89, pp. 950-956.

Basu, S., Moseson, A., Barsoum, M.W., 2006, On the determination of spherical nanoindentation stress–strain curves, Journal of Materials Research, 21, pp. 2628-2637.

Tinscher, R., Bahnsen C., Bomas H., et al., 2001, Gefüge und mechanische Eigenschaften eines durch Sprühkompaktieren hergestellten Stahles 100Cr6, Materialwissenschaft und Werkstofftechnik, 32, pp. 607-620.

Goggin, P.R., 1973, The elastic constants of carbon-fibre composites, Journal of Materials Science, 8(2), pp. 233-244.

Österle, W., Dmitriev, A.I., Gradt, T., et al., 2015, Exploring the beneficial role of tribofilms formed from an epoxy-based hybrid nanocomposite, Tribology International, 88, pp. 126-134.

Dmitriev, A.I., Nikonov, A.Yu., Österle, W., 2016, MD Sliding simulations of amorphous tribofilms consisting of either SiO2 or carbon, Lubricants, 4(3), pp. 1-24.

Dmitriev, A.I., Nikonov, A.Yu., Österle, W., 2018, Molecular Dynamics Modeling of the Sliding Performance of an Amorphous Silica Nano-Layer - The Impact of Chosen Interatomic Potentials, Lubricants, 6(2), pp. 43.

Dmitriev, A.I., Schargott, M., Popov, V.L., 2010, Direct modelling of surface topography development in a micro-contact with the movable cellular automata method, Wear, 268(7-8), pp. 877-885.




DOI: https://doi.org/10.22190/FUME201225007D

Refbacks

  • There are currently no refbacks.


ISSN: 0354-2025 (Print)

ISSN: 2335-0164 (Online)

COBISS.SR-ID 98732551

ZDB-ID: 2766459-4