INVESTIGATION OF INFLUENCES OF FABRICATION TOLERANCES ON OPERATIONAL CHARACTERISTICS OF PIEZO-ACTUATED STICK-SLIP MICRO-DRIVES
Abstract
Keywords
Full Text:
PDFReferences
Chaillet, N., Régnier, S., 2010, Microrobotics for Micromanipulation, John Wiley and Sons Inc, USA, 484 p.
Pohl, D.W., 1987, Dynamic piezoelectric translation devices, Review of Scientific Instruments, 58, pp. 54-57.
Nguyen, H.X., 2014, Simulation, Validation and Optimization of Stick-Slip Drives for Nanorobotic Applications, PhD Thesis, Oldenburg University, Germany, 165 p.
Zhang, Z.M., An, Q., Li, J.W., Zhang, W.J., 2012, Piezoelectric friction-inertia actuator-a critical review and future perspective, Int J Adv Manuf Technol, 62, pp. 669-685.
Hunstig, M., 2017, Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives, Actuator, 6(1), pp.7.
Bergander, A., 2003, Control, Wear testing and Integration of Stick-Slip Micropositioning, PhD Thesis, Ecole Polytechnique Federale de Lausanne, 171 p.
Qin, F., Tian, L., Huang, H., Wang, J., Liang, T., Zu, X., Zhao, H., 2019, Actively controlling the contact force of a stick-slip piezoelectric linear actuator by a composite flexible hinge, Sensors and Actuators A: Physical, 299, 111606.
Hunstig, M., Hemsel, T., Sextro, W., 2013, Stick–slip and slip–slip operation of piezoelectric inertia drives. Part I: Ideal excitation, Sensors and Actuators A: Physical, 200, pp. 90-100.
Hunstig, M., Hemsel, T., Sextro, W., 2013, Stick-slip and slip-slip operation of piezoelectric inertia drives—Part II: Frequency-limited excitation, Sensors and Actuators A: Physical, 200, pp. 79-89.
Nguyen, H.X., Teidelt, E., Popov, V.L., Fatikow, S., 2014, Modeling and waveform optimization of stick–slip micro-drives using the method of dimensionality reduction, Arch Appl Mech, 86, pp. 1771-1785.
Špiller, M., Hurák, Z., 2011, Hybrid charge control for stick-slip piezoelectric actuators, Mechatronics, 21(1), pp. 100-108.
Hunstig, M., Hemsel, T., Sextro, W., 2013, Modelling the friction contact in an inertia motor, Journal of Intelligent Material Systems and Structures, 24(11), pp. 1380-1391.
Van der Wulp, H., 1997, Piezo-Driven Stages for Nanopositioning with extreme stability: Theoretical Aspects and Practical Design Considerations, PhD Thesis, Technische Universiteit Delft, Netherlands.
Breguet, J-M., 1998, Actionneurs “Stick and Slip” pour Micro-Manipulateurs, PhD Thesis, Ecole Polytechnique Federale de Lausanne, 152 p.
Peng, J.Y., Chen, X.B, 2011, Modelling of piezoelectric-driven stick-slip actuator, IEEE/ASME Transactions on Mechatronics, 16(2), pp. 394-399.
Edeler, C., 2011, Modellierung und Validierung der Krafterzeugung mit Stick-Slip-Antrieben für Nanorobotische Anwendungen, PhD Thesis, Oldenburg University, Germany, 187 p.
Popov, V.L., 2012, Basic ideas and applications of the method of reduction of dimensionality in contact mechanics, Physical Mesomechanics, 15, pp. 254-263.
Teidelt, E., Willert, E., Filippov, A.E., Popov, V.L., 2012, Modelling of the dynamic contact in stick-slip microdrives using the method of reduction of dimensionality, Physical Mesomechanics, 15, pp. 287-292.
Nguyen, H.X., Teidelt, E., Popov, V.L., Fatikow, S., 2014, Dynamic tangential contact of rough surfaces in stick-slip microdrives: Modelling and validation using the method of dimensionality reduction, Physical Mesomechanics, 17(4), pp. 304-310.
Nguyen, X.H., Mau, T.H., Meyer, I., Dang, B.L., Pham, H.P., 2018, Improvements of piezo-actuated stick-slip micro-drives: Modelling and driving waveform, Coatings, 8(2), 62.
Edeler, C., 2010, Dynamic-mechanical analysis of piezoactuators for mobile nanorobots, Messe Bremen conference, Germany.
Teidelt, E., 2014, Oscillating Contacts Friction Induced Motion and Control of Friction, PhD Thesis, Technische Universitat Berlin, Germany, 131 p.
DOI: https://doi.org/10.22190/FUME210311036N
Refbacks
- There are currently no refbacks.
ISSN: 0354-2025 (Print)
ISSN: 2335-0164 (Online)
COBISS.SR-ID 98732551
ZDB-ID: 2766459-4