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Abstract. In addition to the textile industry, the wire winding/unwinding process is used 

in various fields such as mechanical engineering, electronics, mechatronics and for 

military purposes. The wire that is wound/unwound has a combination of rotational and 

translation motion, thus exhibiting a complicated behavior. Improper wire tensioning 

leads to problems such as entangling. One of the most crucial factors that affect the wire 

winding/unwinding process is the regulation of the wire tension. This paper briefly 

describes the developed wire tensioning system that can measure and control wire 

tension during the winding/unwinding process. Various data was gathered based on the 

implemented proportional-integral (PI) control and sensors. This data was then used to 

build a neural network in order to predict force in the wire during the winding/unwinding 

process. 
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1. INTRODUCTION 

Wire tensioning systems can be found in various mechatronic systems as their main 

sub-systems. These systems are present in machines in the textile industry [1], cranes [2], 

papermaking [3], medicine [4], etc. Depending on the purpose, wire tensioning systems 

can be generally divided into two groups: constant tension control and variable tension 

control [5], where constant tension control is used in fields such as printing and 

papermaking, while variable tension control can be used in fields where wire can be 

wound/unwound on a winch or reel. Many researchers have dealt with the design and 

control of such systems, and this paper will provide an overview of some of these 

investigations. 
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Kevac et al. [6] obtained the general mathematical model of a cable winding/unwinding 

system for several different constructions, where theoretical and simulation results were 

confirmed through the experimental analysis of one novel construction of the cable 

winding/unwinding system. Kevac et al. [7] analyzed the phenomenon of non-linear and 

pulsed nature of the dynamic process of rope winding/unwinding on a winch.  

Kang et al. [8] developed a device for cable unwinding in order to follow the cable 

unwinding behavior under various unwinding conditions. Xu et al. [9] proposed a novel 

tension control method for a winding machine, which can regulate the fiber tension and 

transport speed of the winding process by governing the outputs of three different driven 

rollers in three levels. Rodriguez et al. [10] introduced a reinforcement learning approach 

to optimize the wire profile generated by an automated wire winding machine. Hultman et 

al. [11] presented a production method using industrial robots for automation of cable 

winding of electric machine stators, where the concept was validated through computer 

simulations and full-scale winding experiments. 

Mousavi et al. [12] proposed a method to optimize the non-negative wire tensions, 

through the cables which were constrained based on the workspace conditions, in the 

redundant cable-driven parallel robots. The effectiveness of the proposed method was 

verified through an experimental study on the RoboCab cable robot. Mishra et al. [13] 

proposed an unsupervised neural network algorithm to perform real-time forward 

geometrico-static analysis of an under-constrained suspended cable-driven parallel robot 

in a suspended configuration under the action of gravity.  

Li et al. [14] designed, developed and evaluated an innovative miniaturized, low 

friction, back-drivable reducing mechanism for haptic or surgical robot applications, while 

Francis et al. [15] proposed a cable driven robotic palpation system, where an indirect 

method based on cable tension observation was used to estimate the contact force. 

Imamura et al. [16] designed a filament winding machine that can measure and control 

winding tension. For this purpose, two kinds of winding tension control were proposed and 

implemented using a proportional–integral–derivative PID or I-PD control. Sheng-le et al. 

[17] introduced a closed-loop tension control system with the programmable logic 

controller (PLC).  

Lu et al. [18] developed an iterative learning sliding mode control scheme for wire 

tension control, while a disturbance observer was employed to estimate the wire tension 

for the implementation of sensorless wire tension control. Abjabi et al. [19] designed a 

sliding-mode (SM) feedback linearization control system for a multi-motor web-winding 

system without a tension sensor. Knittel et al. [20] presented multivariable H∞ robust 

control with two degrees of freedom and gain scheduling applied to winding systems, 

where a global controller, a semidecentralized controller, and a semidecentralized 

controller with overlapping were considered. 

Wang et al. [21] researched and manufactured a closed-loop tension control system, 

where a neural network was applied to the system to overcome the shortcomings of the 

traditional proportional–integral–derivative control method. Zhang et al. [22] presented a 

new control scheme for the winding process of stranded wire helical springs on a computer 

numerical control (CNC) machine to keep the wire tension uniform using the proportion 

integral neural network, while Zhu et al. [23] proposed a neural network-based cable 

tension prediction model for tension control of the traction winch cable in order to 

substitute the traditional control that can make the cable too slack or too tight. 
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This paper presents the design and control of a wire tensioning system as the sub-

assembly of the larger self-propelled herding and pasturing system called RoboShepherd. 

The main function of the developed system is to maintain a certain tension in the wire by 

winding or unwinding the wire, as well as to enable different formations of the 

Roboshepherd system. The presented wire tensioning system consists of a force sensor 

located on one robotic unit and winding reels located on the other robotic unit. The wire is 

wound or unwound from the winding reels, whereby the sensor detects and sends 

information about the force in the wire to the control system. The developed control 

algorithm monitors the force in the wire and tightens or loosens the wire as needed. During 

the initial tests, it was determined that the traditional closed loop control used to control 

the wire tensioning system worked well when the robotic units did not move. However, 

during the movement of robotic units on terrains of different relief, the control algorithm 

showed certain shortcomings, i.e., it was not always able to respond in an adequate way in 

real time, for example, insufficient or excessive tension in the wire might occur. In order 

to overcome these shortcomings, an artificial neural network was built to predict the force 

in the wire which occurs during the winding/unwinding process of the wire.  

The paper’s objectives and main contributions are as follows: 

1) The development of a wire tensioning system as a subassembly of the robotic unit, 

2) The investigation of the behaviour of the developed wire tensioning system during 

different movement scenarios of the Roboshepherd system, 

3) During tests, various data were gathered and later used to train the artificial neural 

network, 

4) The paper provides the results from the test of the traditional control of the wire 

tensioning system and from the simulation of the proposed artificial neural network 

for force prediction.  

The rest of the paper is organized as follows. Section 2 presents a brief description of 

the RoboShepherd system, and the design and closed-loop control of the wire tensioning 

system. The experiment in which the closed-loop control was tested is described in Section 

3, the design and results of the artificial neural network for predicting the force in the wire 

are presented in Section 4, and the conclusion is given in Section 5. 

2. DESIGN AND CLOSED-LOOP CONTROL OF THE WIRE TENSIONING SYSTEM  

RoboShepherd is a swarm robotic system which acts as a movable polygonal electric 

fence that surrounds livestock animals in a field or forces them to move along the 

predefined path. The system consists of a minimum of four robotic units (RU), i.e., four 

movable pillars interconnected by wires that form the electric fence as shown in Fig. 1. A 

pulsed electric current is sent along the wire from an energizer located on the robotic units. 

This fence serves to keep the animals away from the fence since when an animal touches 

the wire fence, the electric circuit closes, creating a short, safe, electric shock leading to 

the animal movement away from the fence. In the same way, the fence serves to protect 

the animals from the predators that can approach the other side of the electric fence. 
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Fig. 1 RoboShepherd System - Robotic units interconnected by wires 

Each robotic unit consists of a vertical pillar, a movable platform on which the vertical 

pillar rests, a wire tensioning system and a force sensor. The wire tensioning system (Fig. 

2a) subassembly consists of a motor-reducer on which the upper plate and the lower plate 

are connected via a screw connection and on which linear ball bushings are mounted, 

through which a linear guide, carrying the entire subassembly, passes. The motor-reducer 

has a double side output shaft. Winding reels are mounted on the top and bottom sides of 

the shaft. Rotating the electric motor on which the winding reels are mounted, allows wire 

winding or unwinding, depending on whether the two adjacent robotic units are at a 

distance or approaching each other. One end of the wire is attached to one robotic unit via 

a force sensor (Fig. 2b), while the other end of the wire is wound on a winding reel located 

on the motor shaft of the other robot unit. In this way the units are serially interconnected 

and form a closed loop. A schematic representation of the wire tensioning system is given 

in Fig. 3. 

 

Fig. 2 Subassembly of the wire tensioning system (a) and force sensor (b) 
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Fig. 3 Schematic representation of the wire tensioning system 

The tension control system is defined as a closed loop. The force in the wire is measured 

using a force sensor, and the gathered value is compared with the desired value. The 

difference between the desired and the current tension force determines an error. This error 

is sent to a PI controller. The PI controller was selected because it best suited the dynamic 

behaviour of the wire tensioning system. Due to the inertia of the wire tensioning system, 

there was almost no chance for the appearance of the excessive force during the winding 

process and therefore it was not necessary to use a derivative component during control. 

Based on the calculated error, the PI controller generated the pulse-width modulation 

(PWM) signal for controlling the voltage of the motor and therefore controlled the motor 

velocity. The turning of the motor caused the winding reels to turn, which made the wire 

to tighten or loosen (Fig. 4). In this way the force in the wire was controlled. During the 

experiments, it was determined that the PI controller was able to bring the system to a 

setpoint. The setpoint or desired tension force was determined experimentally and it 

depends on the distance between the robotic units and the acceptable sag which occurs due 

to the weight of the wire itself. In the movement scenarios described in this paper the 

desired tension force was set to 80 N. 

 

Fig. 4 Block diagram of the control of the wire tensioning system 

3. EXPERIMENT 

To test the closed loop control of the wire tensioning system, an experiment was 

performed near the city of Niš, Serbia. For this purpose, four robotic units (RU1, RU2, 

RU3 and RU4) were placed on location and this was the initial position of the robotic units 

(Fig. 5). After that, the robotic units were interconnected with two rows of wires, where 

each row had one pair of wires (positive and negative wire). In the initial position, the 

distance between the two front robots and the distance between the two back robots (RU1-
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RU2 and RU3-RU4) was the same and was approximately 34 m. The distance between the 

two left side robots (RU2-RU3) was the same as the distance between the two right side 

robots (RU4-RU1) and was around 28 m.  

During the experiment different movement scenarios of the robotic units were carried 

out. Some of the most important scenarios were where one or more robotic units moved, 

with the distance between them changing, such as:  

- All robotic units move with a change in the initial distance between them, 

- Three robotic units move while one waits, 

- Two robotic units move while two wait, 

- One robotic unit moves while others wait. 

Also tested were the scenarios where all robotic units move in the same direction 

maintaining the distance or some robots move while others wait. 

This paper presents the scenario in which all robotic units moved. Robotic unit 1 (RU1) 

started from the initial point RS1 and moved to RS1', robotic unit 2 (RU2) started from the 

initial point RS2 and moved to RS2', etc. In this scenario the back robotic units (RU3 and 

RU4) maintained the distance between them, the right side robots (RU4 and RU1) slightly 

increased the distance, while the distance between the front robotic units (RU1 and RU2) 

decreased during movement. The distance between the left side robotic units (RU2 and 

RU3) increased significantly as illustrated in Fig. 5.  

 

Fig. 5 Initial position and movement scenario  
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In order to minimize the error of position of the robotic units below 1 cm, all robotic 

units were equipped with real time kinematics (RTK) global positioning system (GPS) 

trackers with long range communication radio (LoRa). These RTK GPS trackers take in 

the signals from the global navigation satellite systems along with a correction stream via 

LoRa and calculate the location of the robotic units within 1 cm accuracy in real time. Also, 

all robotic units were equipped with force sensors to measure the forces in wires and current 

sensors to measure the current of the motor which winds/unwinds wires. Each robotic unit 

had a personal computer equipped with appropriate hardware (to which sensors were 

connected) and software developed in the LabVIEW environment for control. These 

personal computers were used for data acquisition, control of the movement of the robotic 

units and control of the wire tensioning systems during the experiments. Data from the GPS 

trackers, current and force sensors were recorded for further investigation.  

During these field tests of the Roboshepherd system several problems with the wire 

tensioning system occurred. Fig. 6 shows the variation in tension force in the pair of wires 

between RU1 and RU2 during the movement of the robotic units in the selected scenario. 

These variations happened for several reasons. The wires used for the fence were 

viscoelastic, therefore, they did not act the same during the winding/unwinding processes. 

Another factor that contributed to the force variations was the long time needed for the 

information from the force sensor to travel to the controller. This led to the slow response 

of the control of the wire tensioning system, which further led to the inability to maintain 

the wires in the desired constant tension, resulting in wire loosening. To try to overcome 

these problems, an artificial neural network for predicting the force in wires was built using 

the data gathered from different sensors mounted on the robotic units, as well as some data 

measured during the control of the wire tensioning system. 

 

Fig. 6 Measured total force in pair of wires 

4. ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF FORCE IN WIRE  

In this study, a standard backpropagation artificial neural network (ANN) was used. 

The architecture of an ANN typically consists of three layers: an input layer, hidden layer, 

and output layer [24]. The ANN created for this study had four layers: an input layer, two 

hidden layers and an output layer. The variables used in the input network layer were the 
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pulse width modulation (PWM) signal, which was used to control the motor velocity, the 

current in the motor measured via a current sensor, and the distance between two robotic 

units. The distance between the robotic units was calculated based on the position data 

gathered from GPS. Each robotic unit was equipped with GPS. The distance between two 

robots was calculated using a haversine algorithm. The haversine algorithm calculates the 

distance using latitude and longitude. This algorithm aims to find the nearest straight line 

distance from two given locations [25]. The variable in the network output layer was the 

total force in a pair of wires measured on the force sensor.  

To create the proposed ANN, some data gathered from the above-mentioned scenario 

where all robotic units moved was used. Four sets, each consisting of 523 pieces of data 

that were used for the creation of the ANN, were related to the two front robotic units RU1 

and RU2 during the movement. The initial distance between robots RU1-RU2 was 34 m, 

while the final distance was 14 m. During the test, robotic unit 1 traveled 20.8 m from 

position RS1 to RS1', while robotic unit 2 traveled 32.7 m from position RS2 to RS2'. The 

measured total force in the wires ranged from 11 N to 105 N, while the maximum motor 

current was 15 A.  

The ANN model was created using the MATLAB (The Math Works, Inc. USA) 

software package. The input layer of the ANN included 3 input neurons, while the output 

layer included one output neuron. The two hidden layers had 20 hidden neurons each as 

shown in Fig. 7. The trial-and-error approach was used for determining the number of 

hidden layers and hidden neurons in these layers. 

 

Fig. 7 Artificial neural network with 3 input variables, 2 hidden layers with 20 

neurons each, and 1 output variable 
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The ANN was trained by using the backpropagation Levenberg–Marquardt algorithm, 

due to its high accuracy and fast convergence. During the training, the mean squared error 

was used for performance measuring. The dataset consisted of 4 variables where each 

variable had 523 samples. These variables were the PWM signal, the distance between the 

robotic units, the motor current, and the total force in the wires. In order to use these 

variables in the ANN the dataset was divided into two matrices. One matrix consisted of 

the PWM signal, the distance and the motor current values, and was called “inputs”. The 

second matrix had the values of the total force in the wires and was called “targets”. When 

the matrices were imported, training, validation and testing datasets for neural network 

were randomly selected. Using the “inputs” and “targets” data, the ANN calculated 

“outputs”. 367 pieces of data were used as a training sample for network training. The 

network was adjusted according to the errors during training. For measuring network 

generalization, a validation sample of 78 pieces of data was used. When the generalization 

stopped improving, network training was halted. During the ANN training process, 

although a larger number of iterations was expected, it was observed that fewer iterations 

were sufficient to train the ANN (Fig. 8). In the end, to verify the network performance, 78 

pieces of data were used as an independent testing sample. 

 

Fig. 8 Mean squared error during the ANN training process for force prediction 

In order to measure network performance, a correlation coefficient r was used  

and the obtained results are shown in Fig. 9. This coefficient shows how well the network 

was trained by matching the predicted “outputs” with real “targets”. The higher value of r 

means the better network performance, where r = 1 corresponds to the perfectly matching 

relationships between “targets” and “outputs”. As can be observed in Fig. 9, during the 

training of the ANN the correlation coefficient was 0.98693, which means that the network 

was trained very well. The trained network was tested on the testing dataset where r was 
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0.97527, while the total network performance of the trained ANN was 0.97981, which was 

recognized as a very satisfying result.  

 

Fig. 9 The results of network performance for training, validation and test dataset 

Table 1 provides a comparison between several metrics. Mean squared error (MSE), 

root mean squared error (RMSE) and mean absolute error (MAE) are calculated for the 

desired tension force and measured force using a force sensor, as well as the desired tension 

force and the outputs given by the trained ANN. As can be observed, the ANN gives a 

slightly smaller error thus giving a better result. 

Table 1 Comparison between measured and ANN predicted force 

 
MSE  

(N2) 

RMSE  

(N) 

MAE  

(N) 

Measured force 1472.66 38.375 32.49 

ANN predicted force 1444.18 38.002 32.37 
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Having the obtained results in mind, it was concluded that the ANN can be used for the 

prediction of the force in the wire with high accuracy. Therefore, the new control of the 

wire tensioning system where the force sensor can be substituted with the ANN was 

proposed and is graphically presented in Fig. 10. The implementation and assessment of 

performance of this new control algorithm will be the subject in further research. 

 

Fig. 10 Proposed control of the wire tensioning system  

5. CONCLUSION 

This paper briefly described the design of the wire tensioning system used as a sub-

system for the swarm robotic system called RoboShepherd. The main task of the developed 

system was to maintain the optimal tension in the wire by rotating the winding reels that 

wind or unwind the wire during the utilization of the Roboshepherd system. In order to 

obtain relevant data for the design of this system, tests were carried out at different 

locations that included environments with different relief and vegetation. The problem of 

wire tensioning control in the dynamic system when the robotic units move was considered. 

Using classical control methods for wire tension led to certain shortcomings and did not 

provide satisfactory results due to the viscoelasticity of the wires and the long system 

response time. The solution to this problem was found in the application of modern 

methods and algorithms from the domain of artificial intelligence. Therefore, the use of 

artificial neural networks for force prediction was investigated. 

Based on the different data gathered from the test including a movement scenario where 

all robotic units moved, the ANN was created. The created ANN showed high correlation 

between the target data – total force in pairs of wires (measured force) used for network 

training and the data gathered from the simulation of the artificial neural network (predicted 

force). MSE, RMSE and MAE were also calculated for a comparison between the 

measured and the ANN predicted force. The obtained results are in favour of using the 

ANN as a possible substitution for the traditional control. Based on these results, a new 

type of control of the wire tensioning system using artificial neural networks is proposed. 
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