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Abstract. The coefficient of friction due to bulk viscoelastic losses corresponding to 

multiscale roughness can be computed with Persson's theory. In the search for a more 

complete understanding of the parametric dependence of the friction coefficient, we 

show asymptotic results at low or large speed for a generalized Maxwell viscoelastic 

material, or for a material showing power law storage and loss factors at low 

frequencies. The ascending branch of friction coefficient at low speeds highly depends 

on the rms slope of the surface roughness (and hence on the large wave vector cutoff), 

and on the ratio of imaginary and absolute value of the modulus at the corresponding 

frequency, as noticed earlier by Popov. However, the precise multiplicative coefficient 

in this simplified equation depends in general on the form of the viscoelastic modulus. 

Vice versa, the descending (unstable) branch at high speed mainly on the amplitude of 

roughness, and this has apparently not been noticed before. Hence, for very broad 

spectrum of roughness, friction would remain high for quite few decades in sliding 

velocity. Unfortunately, friction coefficient does not depend on viscoelastic losses only, 

and moreover there are great uncertainties in the choice of the large wave vector 

cutoff, which affect friction coefficient by orders of magnitudes, so at present these 

theories do not have much predictive capability. 

Key Words: Roughness, Contact Mechanics, Rubber Friction, Persson's Theories, 

Adhesion 

1. INTRODUCTION  

In contact mechanics and tribology, roughness plays a fundamental role for adhesion, 

friction, lubrication, sealing, despite it is very difficult to make any quantitative predictions 

depending on it. In particular, in elastic contact fractal roughness leads to a "ill-posed" 
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solution (Ciavarella et al., [1], Persson [2]), in which the "real area of contact" and many (but 

not all) other physical quantities, cannot be precisely defined because they strongly depend on 

the tail of the power spectrum of roughness (Persson et al., [3]) and in particular on where this 

tail is truncated. The classical asperity models like Greenwood & Williamson [4] initially did 

not recognize this problem, and anyway solve less accurately the mathematical problem of 

elastic rough contact, where Persson’s theory has today elucidated many aspects (see Putignano 

et al., [5]). The original Persson's theory was aimed at a very practical problem with many 

scientific and technological applications, estimating friction due to viscoelastic losses in sliding 

of viscoelastic bodies on hard substrates. However, it seems that most often the pure 

viscoelastic contribution of friction is not sufficient to explain some experimental results, and 

possible other mechanisms like adhesion are also put forward (Lorenz et al., [6]). This perhaps 

somehow limits the interest in obtaining exact results on the viscoelastic losses, and anyway 

suggests simple formulations should be preferred given the uncertainties on the considerable 

number of arbitrary parameters which need to be estimated anyway. 

The spectrum of roughness is often assumed to be of power law form although is not 

precisely defined neither at very low wave vectors, nor at high wave vectors, due to 

limitations in measuring instruments, and the need to use various instruments to obtain a 

measurement over a very broad range of scales. In particular, the truncation of the 

spectrum of the surface will critically affect some results. For example, Lorenz et al. [6] 

suggest that (perhaps in typical present tyre-road contacts?) the truncation wave vector     

should occur where the rms slope reaches 

 1( ) 1.3rmsh q  , (1) 

although we have found no data to interpret the motivation and hence substantiate the 

generality of this recommendation, and no independent researcher has suggested 

alternative criteria. Other authors (Carbone & Putignano [7]) suggest many factors could 

be associated to the truncation cutoff, including small dirt particles or rubber wear 

particles, but do not give precise suggestions. Hence, while the mathematical problem is 

relatively easy to formulate, and the multiscale nature of roughness is postulated to be of 

critical importance, the actual practical solution of this crucial point is left somehow more 

obscure. 

Even less discussed is the other truncation in the spectrum, that at low wave vectors, 

despite being clear that by enlarging the size of the specimen it is very likely that some 

power content appears – and anyway, one could argue that even shape or undulations of 

the pavement could occur and may, in principle, play a role for friction, as we shall see 

more in details where in particular, in the following. 

The theory by Persson [2] is based on exact solution for sliding of a rough rigid 

random surface in full contact with a viscoelastic medium. The exact result for the friction 

coefficient would be 
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where σ0 is the nominal contact stress, U (q) the surface displacements power spectrum 

(defined as a function of wave vector q), where q0 is the smallest (relevant) roughness 

wave vector. Also, E (ω) is the complex modulus of the viscoelastic material.  
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However, since full contact is a very remote condition in practical applications, the 

real condition of partial contact is solved by making various clever approximations: 

 

1) The PSD (power spectrum density) of displacements, U (q), which would be 

strictly required to make a correct theory, is approximated with the PSD of the 

roughness C (q) 

 ( ) ( ) or ( ) ( )zu h U q C qx x  (3) 

Since power loss occurs mainly in the contact area, and since it is known that the two 

PSDs are parallel curves, the error can be fixed a posteriori with corrective factors. 

2) The power loss integration is weighted by function P (q) = A (ζ) / A0 which is the 

relative contact area when the interface is observed at magnification ζ = q / q0, 

where A0 is the nominal contact area. On the grounds that only the portion of the 

area which is actually in contact really forces the surface to deform and undergo 

the viscoelastic deformation 
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where the argument of the complex modulus is the projection of the wave vector on the 

direction of sliding. Notice that for negative frequencies, the complex modulus becomes 

the complex conjugate of the modulus at positive frequencies, which permits to solve 

the integrals such as 
2 /2

0 0
4

 
  , and corresponds also to the fact that sliding in 

negative direction makes the same contribution as sliding in the positive direction. 

3) There is a further factor S (q), a correction factor which at large magnifications can 

be taken as S (q) ≃ 1/2, and otherwise results from some fitting calculations of the 

stiffness of the contact (which were done for elastic contact), as S(q) = ½ + ½ 

P
2
(q). 

 

All these corrections result in a final calculation which involves four nested integrals 
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which is not trivial to compute (at least, in our experience), and certainly does not 

elucidate the parametric dependences of the various branches of the friction coefficient 

(low, intermediate, and high velocities), as we shall attempt here. 

Persson’s much earlier model [8] suggested that the friction coefficient was more 

simply 
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where E (ω0) is the complex viscoelastic modulus at the frequency ω0 ∼ v / l of the cyclic 

deformation at velocity v of an asperity of diameter l. C is a constant of order unity, and 

this form is much easier to understand as well as to recognize the crucial role of the 

truncation of the roughness spectrum, here in the choice if asperity diameter l. Adding 

that Im E (ω0) / |E (ω0)| is also of the order unity at the frequency where this ratio assumes 

a maximum, friction itself would be of the order unity as maximum value, as it is correct 

in terms of order of magnitude. 

Previous fundamental contributions were made by Williams, Landel & Ferry [9] 

which relate temperature and rate dependence of viscoelastic properties, interpreted by 

Grosch [10] which justify a single "master curve" for the temperature and velocity 

dependence of friction. Grosch himself had established the main results for friction of 

rubbery materials long ago, finding experimentally that friction could show two maxima, 

one attributed to adhesion with the track, where ideally should be existing even for a 

perfectly smooth surface [11], and the other at higher frequency due to viscoelastic losses. 

The present scientific and technological challenge is on how to make more "quantitative" 

models, following the hope that, measuring in details the viscoelastic properties of the 

materials, the roughness of the substrate, one could estimate friction: but there remains a 

few parameters to estimate, and particularly on the adhesive component, we are left 

ultimately with a "fitting" exercise, which at engineering level would compete with other 

possible alternative, including perhaps "artificial intelligence" [12]. 

Popov ([13], Eq. (16.12)) suggests an equation similar to Eq. (7) of Persson [8], which 

can be essentially attributed to a single "scale" of asperities (same diameter), which 

however, recognizes in factor C the contribution due to the rms slope of surface h′rms (q1), 
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and therefore clearly identifies that the friction coefficient strongly depends on the truncation of 

the PSD of roughness. Since this implies that μ ≤ h′rms (q1) as at most we can have a peak Im E 

(ω0) / |E (ω0)| close to 1, we recognize that for this theory to be predictive, one needs to 

postulate a very high slope of the surface, which in turn means a measurement of roughness 

down to very small scales, to the order of microns in wavelength, and below. We shall see, 

however, that this simplified formulation is valid only in a very crude sense. 

We assume Persson's theory is the most accurate analytical model presently available, 

although present comparison with full numerical simulations (see e.g. Scaraggi & Persson 

[14]) is necessarily very limited in terms of broadness of the roughness spectrum 

bandwidth. Unfortunately, it involves four nested integrals which in our experience are 

not easy to compute numerically, and it seems important to see: 

 under which conditions the "simple" formulations by early Persson or Popov (8), 

see also Ciavarella [15] are valid 

 what the order of corrective coefficient k is in a more general equation 
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 what the main parametric dependencies are, if the dependence is not that given by 

this form (9) 
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Here, we shall make a more detailed study, based on simple material models, like the 

generalized Maxwell model, or one with power law trends of the loss and storage moduli 

at low frequencies, to make illustrative examples. 

2. GENERALIZED MAXWELL MATERIALS 

Viscoelastic materials are typically represented with complex elastic moduli 

 ( ) Re ( ) Im ( ) ( ) ( )E E i E E iE         ,  (10) 

where E′ (ω), the "storage modulus", is the material stiffness while the "loss modulus" 

E′′(ω) is the irreversible damping: also, the ratio between loss modulus and storage 

modulus is dissipation factor tan δ(ω), which indicates the degree of viscoelasticity of a 

material. These factors are often determined using the Dynamic Mechanical Analysis 

(DMA), by a forced oscillation at a constant frequency, and interpolation and 

extrapolation for a wider frequency range is obtained using the time / temperature shift 

WLF-equation by William, Landel, Ferry [9]. Very often, a Prony series describes the 

complex modulus (see Fig.1), with a model comprising a parallel connection of several 

Maxwell elements 
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where E∞ is the final, equilibrium long term modulus of a tensile test (if shear modulus is 

measured, usually the conversion if done to Young’s modulus assuming a frequency-

independent Poisson’s ratio), while 
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is the instantaneous modulus. The relaxation times are defined as τi = ηi / Ei, where ηi is 

the damping viscosity of the i-th element, and are usually ordered such that τ1 << τ2 … 

 

Fig. 1 A typical Prony series of a generalized Maxwell material 
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There are various approaches to determine the Prony series although this is not a well-

defined exercise so that often the relaxation constants are assumed, and the moduli are 

found by some optimization to reduce the error with experimental data [16, 17]. 

2.1. A single relaxation time 

Let us consider for simplicity just one characteristic time 
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We obtain from the general Persson’s model (6) 
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and  
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For a power law PSD of roughness between cutoff wave vectors q ϵ [q0, q1] (a choice 

without loss of generality if the results will turn out to depend only on the tail of the PSD 

which is indeed very often a power law) 
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for which we can give all integrals except the final one in series form involving hypergeometric 

functions (Mathematica can compute it, but it is here not reproduced for brevity, although 

some care should be used for very low velocities, where it is better to use the asymptotic 

expressions). It is interesting, however, to give the behavior at low and high speeds 
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which is obviously the result due to the complex modulus being essentially real at high 

and low frequencies, and given by E∞ and E∞ + E1, respectively. 

Further, 
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Therefore, using  
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as can be done even for large area ratios, we obtain 

 

 

1

0

ow

2 2

1
l 0 1

2 2 2 2

0

2

1 1
0 1

1
1

1 low

( ) 2 (1 ) d

2 (1 )
2

Im ( )2 1

2 ( )

q H

V
H H

q

H

rms

V

E q
q C H v q

E q q

E q
C H v

E H

E q vH
h q

H E q v

 







 






 


 









 , (28) 

where we used that rms slopes 
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Therefore, notice that corrective coefficient k with respect to Eq. (9) depends only on the 

Hurst exponent of the surface and, 

 
2 1

2

H
k

H





  (30) 

and for example k ≃ 0.133 for H ≃ 0.8. 
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This confirms that the friction at low speed highly depends on q1 as suggested 

originally by Persson [8], then by Popov [13] and Ciavarella [15], but also finds that the 

corrective coefficient can be significantly lower than one. Perhaps this is due to the nature 

of the single relaxation constant, which is probably a limit case. Nothing can be said a 

priori on how far this approximation goes, however, in terms of speed range. 

Therefore, it is useful to move to the other extreme at high speeds, where we find with 

the same procedure that 
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Eq. (32) is therefore completely different in form with respect to what suggested originally 

by Persson [8], then by Popov [13] and Ciavarella [15], so there can be no corrective 

coefficient with respect to Eq. (9). In particular, as it is evident in the form (31), it does 

not depend on truncating large wave vector. 

As an example, we introduce the case of PSD having H = 0.86, C0 = 1.152×10
−3

[m
6−2H

], 

and q0 = 10
2.7

[1/m], which are realistic values for road surfaces, whereas the high truncating 

wave vector is initially set, according to Lorentz et al. [6], such that h′rms = 1.3. For the 

material, we take E∞ = 10MPa, E1 = 1000MPa, τ1 = 7 × 10
−4

s and Fig. 2 shows the storage 

and loss moduli in terms of frequency. 

 

Fig. 2 An example Maxwell material with E∞ = 10MPa, E1 = 1000MPa, τ1 = 7 × 10
−4

s. 

Black line indicates the storage, while blue line the loss modulus 

Fig. 3 shows the results for the friction coefficient, showing that the low and high velocity 

approximations work quite well whereas using the full approximate (9) "simple" equation using 

for k = 0.098 as in (30) does not estimate the peak friction coefficient with great accuracy, 

and at high speeds, it is better to use directly the high velocity approximation (31). 
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Fig. 3 Friction coefficient for the example Maxwell material of Fig. 2. Black solid line is 

the numerical solution of the friction coefficient with the full Persson’s model, red 

dashed line indicate the asymptotic results (28), (31), and blue dashed line is the 

approximate "simple" equation (9) using for k = 0.098 as in (30) 

Fig. 4 shows the effect of varying the truncation cutoff, given this choice is arbitrary, 

results also in dramatic differences. In particular the solid lines indicate the full Persson’s 

solution with h′rms = 0.69, 1.3, 1.8, 2.1 (black, blue, red and green lines, respectively). 

Notice that the high velocity branch of the friction coefficient curve does not change, as 

we expected from the result (31) which is instead determined by the rms amplitude of 

roughness, not sensitive to the truncating cutoff. It is obvious that by small changes in the 

choice of the truncation in h′rms, namely just tripling its value from 0.69 to 2.1, we have in 

the low branch a change in the friction coefficient which is by orders of magnitude! 

Notice also that for very broad spectra of roughness, one could expect a persistently high 

friction coefficient for a wide range of velocities. In this sense, the "single scale" 

approximation (9) is increasingly poor for broad spectra, as can be expected. 

 

Fig. 4 Friction coefficient for the example Maxwell material of Fig. 2, while varying the 

upper wave vector truncation q1 such that h′rms = 0.69, 1.3 1.8, 2.1 (black, blue, red 

and green solid lines, respectively, for the full Persson’s solution). Dashed lines of the 

corresponding color are the approximate "simple" Eq. (9) using for k = 0.098 as in 

Eq. (30) 
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2.2. Multiple relaxation times 

Let us reconsider the more general case of various relaxation times so as to cover 

more realistic materials. It is clear that repeating the derivation 
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so that I1,lowV remains the same as with a single relaxation time (23), where now we 

replace the modulus at low or high frequency 
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since 

 
low high

1 1

1
Im ( ) ,  whereas   Im ( )

n n
i

i

i i i

E
E E

 
   

  

   .  (37) 

Similarly for I2, but we can also say 

 
ow

2

2,l 2
2

0

2
( )

(1 )
V

E
I q



 



  

,  (38) 

 

2

2,high 2
2

1
0

2
( )

(1 )

n

V i
i

I q E E


 




 
  

   

 .  (39) 

We obtain from the general Persson’s model (6) (and again for a power law PSD of 

roughness), a similar behavior at low and high speeds 
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Therefore, using Eq. (27), we obtain the same equations (28) and (32) as for the single 

relaxation time. This seems to suggest that these results should have greater generality. 

However, in many cases, experimentally we observe that loss and storage modulus have 

power law form in frequency for many compounds of interest, as we shall discuss in the 

next paragraph. 
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3. POWER LAW FORM OF THE LOSS AND STORAGE MODULUS 

It appears that in the practical range of interest for rubber compounds used in tires 

(see Lorenz et al. [6]), we observe storage and loss moduli which seem to follow power 

laws (see Fig. 5 for three distinct examples). Let us therefore consider this case, which 

permits also a simple estimate of the relevant equations in closed form at low speeds. 

(a) 

(b) 

(c) 

Fig. 5 Real (solid blue) and Imaginary (solid black) parts of the viscoelastic modulus in Lorenz 

et al. [6] rubber compound A, B, C (respectively in Fig. 5 a,b,c) together with 

power law approximations (dashed lines) at low frequencies. These are E = 10
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respectively 
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Let us consider the following low-frequency end approximation of power law behavior, 

 Re ( ) 10 and Im ( ) 10 i ir rE E
         (42) 

where for example Lorenz et al. [6] rubber compound A, B, C suggest that βr ≃ 0.05 − 

0.075 whereas βi ≃ 0.07 − 0.09. This seems to suggest that while for the real part, we are 

not too far from the constant values which in principle we expect at very low frequencies 

for a (even generalized) Maxwell material, the imaginary part is certainly remote from the 

single relaxation constant material, which would have βi = 1. 

Now, with the same notation as for the Maxwell materials, we obtain the integrals 
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where we have considered that at low v the real part of the modulus dominates over the 

imaginary. 

Also, 
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Therefore, using Eq. (27), 
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 , (46) 

since 
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Eq. (46) is an equation of the form suggested originally by Persson [8], then by Popov 

[13] and Ciavarella [15], but where the corrective coefficient as in Eq. (9) is given by 
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 , (48) 

which in particular we find that for the Maxwell material having βr = 0 and βi = 1, we 

return to Eq. (30). Notice therefore from Eq. (48), that the actual behavior at low speeds 

changes significantly the coefficients k needed in the simple Eq. (9) to estimate the 

ascending branch of the friction curve. 

Fig. 6 compares some example coefficients k as in Eq. (48) as a function of βi in the 

range from 10
−3

 to 1, for a few cases of βr = 0, 0.05, 0.1, 0.15 (black, blue, red, green curves, 

respectively). It is evident that k can vary significantly both below and above 1, tends to be 

independent on βi at low βi. However, it is quite close to 1 for the typical materials shown in 

Lorenz et al. [6] rubber compound A,B,C, which explains why there appeared to be even too 

success with the simple equation in a previous paper (Ciavarella [15]). 

 

Fig. 6 The multiplicative coefficient k as in Eq. (48) for using the approximate "simple" 

Eq. (9) at low velocities, for generic power law approximations of the storage and 

loss moduli as a function of βi in the range from 0 to 1, for a few cases of βr = 0, 

0.05, 0.1, 0.15 (black, blue, red, green curves, respectively) 

4. DISCUSSION 

Recently [18], some actual data from Tolpekina and Persson [19] have been analyzed 

using the simplified formulation, and adhesive contribution. It has been remarked that the 

adhesive contribution seems more important than the viscoelastic one, perhaps more 

important also than what expected, for example, from earlier studies of Grosch. Unfortunately, 

the adhesive contribution fundamentally to date is modeled with empirical fitting equations, 

which have a "bell-shape" which is quite similar to the viscoelastic friction contribution, in 

large parts of the velocity spectrum. Hence, it results that it is quite difficult to estimate with 
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precision the relative contribution since various choices of the truncation wave vector, and 

other fundamentally arbitrary constants, result in equally satisfactory fitting of the 

experimental data. Additionally, viscoelastic materials nonlinear effects seem to strongly 

affect the adhesive models (and strictly speaking also the viscoelastic ones, although it is not 

clear if Tolpekina and Persson [19] consider this), and their role depends also crucially on 

the choice of the truncating wavelength of roughness. Hence, while we have made a 

significant progress in the mathematical solution of the viscoelastic contribution in highly 

idealized conditions, this seems very remote from practical "predictive" capabilities, and the 

complexities of the full multiscale theories do not help in clarifying the subject for a large 

audience. What is needed is, instead, that more researchers work actively in this field by 

comparing theories and results, and ideally, collecting "Round Robin" results and 

benchmark cases. Our effort here is a small attempt in this direction. 

5. CONCLUSIONS 

We have derived some simple results for the fully multiscale Persson’s theory as 

applied to quite important materials models, like generalized Maxwell, or with power-law 

storage and loss modulus at low frequencies. This has permitted to elucidate that the 

friction coefficient at low velocity of sliding, where we expect most contacts operate, 

show a simple dependency on the ratio of imaginary and absolute value of the modulus 

and on the rms slope of the profile noticed earlier by Persson, Popov and also the present 

author, which also implies a very high sensitivity to the choice of the truncating wave 

vector of roughness. However, we also find that this "simple equation" has a multiplicative 

coefficient which depends on the form of the viscoelastic modulus, and we have given 

approximate but simple closed form results for simple cases. The peak of the friction 

coefficient, however, cannot be estimated accurately with the simple equation. At high 

velocities, it is found that the descending (unstable) branch at high speed mainly on the 

amplitude of roughness, and, therefore, would not depend on the choice of the truncating 

wave vector. There remain great uncertainties in "predicting" friction coefficient since orders 

of magnitude variation can be found changing the truncating wave vector. 
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