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Abstract. New insights about close connection between skeletal and immune systems have expanded vistas of modern 

medicine and tissue engineering. Intensive progress of osteoimmunology enabled the understanding of processes 

related to bone tissue from a completely new angle, both in physiological and pathological conditions. In this respect, 

macrophages stand out as cells which affect bone through the ability to secrete a range of different cytokines. 

Macrophages’ activation is directed by environmental conditions which determine the phenotype and function of these 

cells. Acquired phenotypic and functional characteristics of macrophages are changed according to changes in their 

environment. Thanks to these abilities, macrophages have great impact on bone development, bone homeostasis and 

osteoreparatory process. During bone development, macrophages can affect osteoblast differentiation and matrix 

mineralization. Coordinated action of osteoclasts and osteoblasts is important in bone tissue remodeling process. 

Also, during osteoreparation macrophages are among the first cells that will come to the site of bone injury. Their 

impact on bone is particularly visible during inflammatory phase of fracture healing. Better understanding of 

mechanisms by which macrophages exert their influence on bone would be an important step in approach to more 

specific therapies that would modulate activity of these cells and might accelerate healing of bone defects. 
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Introduction 

 

The belief that bones represent inert structures has been 

disproved long ago by abundant evidence that bone 

tissue is very dynamic and that it is in constant process 

of resorption and formation [1, 2]. There are numerous data 

on direct correlation between skeletal and immune 

systems. Among various cells of immune system, 

macrophages are those that stand out by their secretory 

products which directly affect osteogenesis and 

osteoreparation [3–5]. In addition, macrophages are very 

plastic cells since they adjust their activity and change their 

phenotype according to general state of the environment. 

They are involved in several stages of osteoreparation, and 

are especially important actors during initiation of bone 

tissue healing [4]. Therefore, the possibility of modulating 

macrophages' activity would be a useful tool in an attempt 

to control osteogenesis and osteoreparation, especially 

after bone tissue injury or in pathological conditions.    
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Macrophages’ Differentiation and Activation 

Macrophages belong to a group of professional phagocytes 

which perform their functions thanks to numerous 

surface receptors and secretory products [6]. Almost all 

organs of the body contain tissue-resident macrophages, 

which play an important role in homeostatic processes [7, 

8]. Macrophages have a wide range of morphological 

characteristics that correspond to their functional state 

and environmental conditions. Different subpopulations 

of tissue-resident macrophages exist in various tissues 

[8–10]. Depending on the tissue they are placed, tissue-

resident macrophages include osteoclasts (bone), alveolar 

macrophages (lung), microglial cells (CNS), histiocytes 

(connective tissue), Kupffer cells (liver), and Langerhans 

cells (skin) [11]. 

The process of macrophages’ differentiation should 

be distinguished from activation process, which means 

that differentiated macrophages through further stimulation 

increase their capability to exert certain functions. Tissue-

resident macrophages are quiescent and characterized by 

low oxygen consumption, low expression level of major 

histocompatibility complex class II gene (MHC II), a 

little cytokine production and by preserved proliferative 

capacity. It is believed that there are two levels of 

macrophages’ activation. Initial activation (priming) leads 

to increased expression of the MHC II gene, increased 

production of cytokines and reduced proliferative capacity. 
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Priming is usually achieved by low concentrations of 

interferons (IFNs) and it is a process of preparing for a 

quick response and reaction to other cytokines, although 

macrophages are not still fully activated [12]. Macrophages 

then react to secondary signals (e.g. tumor necrosis factor-

α (TNF-α) or lipopolysaccharide (LPS)) and become fully 

activated, which means that they lose their ability to 

proliferate, but gain ability to kill parasite and tumor 

cells, and all this is accompanied by increase in oxygen 

consumption, cytokines, reactive oxygen species (ROS) 

and nitric oxide (NO) secretion [13, 14].  

Macrophages’ Classification according to 

their Functional Characteristics 

Macrophages show a remarkable plasticity through the 

ability to adapt their phenotype and function to 

environmental changes. Tissue injury, infections or tissue 

reaction to a foreign body excite quick response of these 

cells. Macrophage classification arises from their 

functional characteristics, surface markers and type of 

produced cytokines. According to their functional 

characteristics macrophages are usually classified as M1 

or M2, i.e. classically and alternatively activated 

macrophages. This nomenclature is based on the type of 

T cells (Th1 or Th2) which influence macrophages’ 

activation by distinct cytokines [15].  

M1, i.e. classically activated macrophages, are 

referred as inflammatory and can be activated by IFN-γ, 

TNF-α and LPS. They are involved in defending the host 

against various pathogens and tumors. Macrophages of 

M1 type produce ROS and NO, high level of interleukin-

12 (IL-12) and low level of IL-10 and also produce 

numerous pro-inflammatory cytokines including TNF-α, 

IL-1 and IL-6 [6].  

M2, i.e. alternatively activated macrophages, are 

referred as anti-inflammatory according to their anti-

inflammatory function, but they also regulate wound 

healing [6]. Within this type of functional macrophages 

there are three subtypes of cells with different 

physiological roles. M2a macrophages are involved in 

later events of tissue repair, and they are activated by 

cytokines IL-4 and IL-13. M2c macrophage subtype is 

induced by IL-10 or glucocorticoids, and this subtype 

has anti-inflammatory function. M2b macrophages also 

achieve anti-inflammatory activity via IL-10, but also 

synthesize pro-inflammatory cytokines (IL-1 and TNF-

α), like M1 type macrophages [16]. 

The relationship between Skeletal and 

Immune Systems from Macrophages’ 

Perspective 

At the beginning of the new millennium osteoimmunology 

was defined as new branch of science that deals with 

interactions between cells of immune system and bone 

tissue cells [17]. Immune cells produce cytokines which 

can have a part in normal bone tissue healing [4], but 

also can affect appearance and flow of different 

pathological conditions [18].  

The connection between bone and immune system 

exists on at least three levels. Firstly, bone marrow is 

anatomically located in bones, so the mutual interaction 

of immune and bone cells is unavoidable. Secondly, 

cells of immune system originate from hematopoietic stem 

cells of bone marrow, similar to osteoclasts which 

structurally and functionally belong to bone tissue. Thirdly, 

the two systems share various cytokines, growth factors, 

signaling molecules and transcription factors [19]. 

Connection and conditionality between cells of bone 

and immune system is clearly represented trough 

osteoclastogenesis, since many factors that affect precursors 

of osteoclasts can be synthesized by inflammatory cells too. 

Furthermore, osteoclasts and immune cells share the same 

progenitors through differentiation process [20]. Osteoclasts 

originate from bone marrow pluripotent hematopoietic stem 

cell and are by themselves specialized bone tissue 

macrophages [11, 21]. Likewise, individual macrophages 

can fuse together to form osteoclasts [22]. The two most 

important cytokines that are necessary for unobstructed 

osteoclastogenesis are receptor activator of nuclear factor-

κB ligand (RANKL) and macrophage colony-stimulating 

factor (M-CSF), which can be secreted among others by 

inflammatory cells. RANKL is a cytokine expressed by 

osteoblasts, stromal cells, and activated T lymphocytes 

[23] and belongs to TNF superfamily. RANKL binds to 

RANK-receptor which exists on the surfaces of osteoclast 

precursors. Osteoprotegerin (OPG), secretory product of 

osteoblasts and numerous hematopoietic cells, is RANKL-

competitor and has anti-osteoclastogenic function [24]. M-

CSF is produced by bone marrow stromal cells, 

osteoblasts and T lymphocytes and it is responsible for 

proliferation and survival of osteoclast progenitors, as 

well as mature osteoclasts [25]. The fact that these two 

factors can be synthesized by cells of immune system 

indicates that in this way immune system can affect bone 

tissue. This correlation is particularly visible in some 

bone diseases [26]. 

Macrophages/monocytes can regulate bone 

development and homeostasis through secretion of 

numerous cytokines and other molecules, although their 

role in abovementioned processes is still not fully 

understood. Many of these secretory products are pro-

angiogenic and pro-osteogenic [27]. It has been 

experimentally proved that macrophages are involved in 

osteoblast differentiation [3] and mineralization process 

[3, 28].  In addition, macrophages may activate other 

cells from their environment to secrete certain cytokines 

important for the osteogenic process [27]. Chang and 

coworkers point to macrophage population termed 

OsteoMacs in murine and human osteal tissue, significant 

in bone homeostasis. OsteoMacs are defined as stellate-

shaped resident bone tissue macrophages located on 

endosteal and periosteal surfaces. Difference between 

OsteoMacs and osteoclasts is, among others, based on 

F4/80
+
TRAP

-
 phenotype of OsteoMacs and F4/80

-

TRAP
+
 phenotype of osteoclasts. Also, OsteoMacs in 
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physiological conditions are not osteoclast precursors, 

while they may be in pathological conditions. These 

cells interact with osteoblasts, regulate their function 

and mineralization process through induction of gene 

for osteocalcin in vitro.  [29]. OsteoMacs at bone modeling 

and remodeling sites form canopy structures over mature 

osteoblasts. Depletion of these cells leads to disappearance 

of mature osteoblasts from bone modeling surfaces. During 

bone remodeling OsteoMacs, like osteoclasts, provide 

coupling signals, most probably transforming growth 

factor beta (TGF-β) and ephrin B2 to osteoblasts, affecting 

bone formation [30]. 

Another unique ability of macrophages is to quickly 

respond to chemoattractants from the site of tissue injury. 

During fracture healing, macrophages come to the site of 

injury and release various cytokines that promote 

angiogenesis and recruitment of mesenchymal stem cells 

[27]. Presence of blood vessels and mesenchymal stem 

cells at defect site is crucial for proper osteoreparatory 

process [31, 32]. All of these macrophages’ capabilities are 

in favor of their potential use in bone tissue engineering. 

Inflammatory process plays an important role in 

initiating bone regeneration after injury. On the other 

hand, some inflammatory diseases or reactions to 

implanted material can lead to chronic inflammation, 

which has a destructive effect on bone tissue [33]. One 

such example of bone destruction associated with 

inflammation is reumatoid arthritis [34]. Therefore, 

studies concerning control of inflammatory signal are of 

the great significance. 

The role of macrophages in the process of fracture 

healing is discussed in the following sections. 

Repair of Bone Defects 

Bone healing process usually goes through three 

dynamic phases that overlap each other and are named 

inflammatory, reparative and remodeling phase. Therefore, 

repair of bone defects (fractures) is characterized by an 

initial inflammatory reaction accompanied by cell 

proliferation and remodeling, which ultimately leads to 

bone reconstruction. The main actors of inflammatory 

process are macrophages, which migrate to the site of 

injury [4]. These cells also release factors involved in the 

formation and resorption of bone tissue. 

Inflammatory phase 

Together with bone damage, as consequence of fracture, 

damage of surrounding tissues and blood vessels also 

develops. Blood coagulation results in formation of 

hematoma. Due to blood vessels injury in the zone of 

bone fracture, lack of oxygen and nutrients occurs, 

leading to premature cell apoptosis and to the formation 

of necrotic tissue. Necrotic tissue, platelet-derived growth 

factor (PDGF) from blood clot and growth factors from 

extracellular matrix (TGF-β for example) act as 

chemoattractants for inflammatory cells (macrophages, 

monocytes, lymphocytes and neutrophils) and fibroblasts, 

and provoke acute inflammatory response. This initial 

phase of bone tissue healing reaches its maximum 24-48 

h after injury and completes in about 1 to 2 weeks [35, 

36]. Actually, it is believed that these first 2 weeks are 

the milestone in bone healing process [37]. 

Inflammatory phase is characterized by dynamic 

processes such as formation of granulomatous tissue, 

ingrowth of blood vessels and migration of mesenchymal 

stem cells to the fracture site [38, 39]. Likewise, levels of 

several pro-inflammatory cytokines, including TNF-α, 

IL-1, IL-6, IL-11 and IL-18 are significantly increased 

[36, 38]. Although it is known that extended or chronic 

expression of pro-inflammatory cytokines might have 

negative effect on bone, short-term and highly specific 

secretion of these molecules is extremely important for 

tissue regeneration [40, 41]. These signals recruit 

inflammatory cells and promote angiogenesis [38]. It is 

believed that TNF-α as a product of inflammatory cells, 

especially macrophages, mediates the induction of 

secondary pro-inflammatory signals, which are 

chemoattractants for different cells and also can induce 

osteogenic differentiation of osteoblast-like cells [42, 43, 

44]. Along with them, TGF-β1 and PDGF from blood clot 

also serve as guides to differentiation and proliferation of 

mesenchymal stem cells [45]. Over time, the acute 

inflammatory response is being replaced by the next phase. 

Reparative phase 

Reparatory phase starts with reorganization of hematoma. 
Numerous cells which came to the fracture site during 
inflammatory phase produce callus. Callus consists of 
cartilage and immature bone tissue and has function to 
increase stability of the fracture. Formed cartilage through 
ossification process becomes bone, under the influence of 
TGF-β2, TGF-β3, bone morphogenetic proteins (BMPs) 
and other signaling molecules [35, 38, 42, 46]. During 
reparative phase inflammatory cells and pro-inflammatory 
cytokines are absent [39]. 

Remodeling phase 

During remodeling phase through the activity of 

osteoblasts and osteoclasts initial immature woven bone 

is replaced by mature lamellar bone. This phase, which 

begins 8 to 12 weeks after injury, is strongly osteoclast-

dependent and it is regulated by a number of pro-

inflammatory signals like IL-1, IL-6, IL-11, IL-12 and 

TNF-α [36, 38, 39]. Remodeling phase is the longest 

phase during bone healing process and can last up to 

several years.  

The role of Macrophages during Fracture 

Healing Process 

Macrophages play a significant role in bone healing 

process, in initial as well as the final stage. Immediately 

after fracture, macrophages along with neutrophils and 

lymphocytes penetrate into hematoma. Monocytes/ 
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macrophages produce BMP-2, one of the key factors 

involved in the early osteogenic process. In fact, BMP-2 

directs stem cells toward osteoblast differentiation in 

vitro, as well as in vivo. Pirraco and coworkers used 

experiments with co-cultures of human peripheral blood 

monocytes/macrophages and human bone marrow 

stromal cells (hBMSCs) which have shown that 

hBMSCs from co-cultures have higher proliferative 

capacity and higher alkaline phosphatase activity in 

regard to hBMSCs monocultures [47]. Schlundt and 

colleagues have worked with murine experimental 

model which included macrophage reduction using 

clodronate liposomes during bone healing process. In 

their experiments macrophages’ reduction had no effect 

on early stages of fracture healing, while they had 

altered endochondral ossification through delayed hard 

callus formation [48]. 
Bone tissue is well vascularized so angiogenesis and 

vascularization are essential for unobstructed repair of 
bone tissue after injury [31, 49, 50]. According to 
literature data it is known that macrophages are able to 
affect all stages of angiogenesis thanks to their secretory 
products [51]. Stimulated macrophages release pro-
angiogenic cytokines and growth factors, as well as 
enzymes that degrade extracellular matrix and enable 
releasing of “trapped” growth factors (bFGF, TGF-beta, 
GM-CSF) which also have proangiogenic activity [52]. 
Inclusion of macrophages (induced from THP-1 
monocytic cell line treated with PMA (phorbol-12-
myristate-13- acetate)) in co-culture made of human 
outgrowth endothelial cells (OECs) and primary 
osteoblasts leads to multiplying of microvessel-like 
structures formed by OECs and higher production of 
vascular endothelial growth factor (VEGF) compared to 
co-culture. Likewise, in triple-culture expression of IL-
6, IL-8 and TNF-α was upregulated, indicating 
beneficial effects of pro-inflammatory cytokines in 
osteoreparation [53]. 

M1 type macrophages are the first that could be 

found at the site of tissue injury, with role to engulf 

necrotic material and to synthesize pro-inflammatory 

cytokines, ROS and NO. Guihard and coworkers found 

that M1 type macrophages stimulate osteogenic process 

through production of Oncostatin M (OSM), member of 

IL-6 cytokine family, which induce osteoblast 

differentiation and mineralization. [3]. Other experiments 

based on juxtacrine interaction in co-cultures composed 

of primary mouse macrophages and bone marrow stromal 

cells (BMSCs) resulted in enhanced proliferation and 

migration of stem cells which was mediated with 

increased macrophage IL-6 production in these co-

cultures [54]. 

M1 macrophages are later replaced by M2 type that 

produces IL-10, TGF-β, as well as other anti-inflammatory 

cytokines, which are essential for proper wound healing. 

Actually, due to their plasticity macrophages can switch 

from M1 to M2 phenotype [55, 56]. It has been 

experimentally proved in mouse osteotomy model that 

induction of M2 macrophages during fracture healing 

process enhances bone formation [48]. Loi and colleagues 

had investigated the effect of M1 and M2 type 

macrophages on osteogenesis in vitro in co-cultures of 

polarized primary murine macrophages and preosteoblastic 

MC3T3-E1 cells [57]. In each co-culture type osteogenic 

differentiation of MC3T3-E1 cells was increased and 

switching of macrophage phenotype from M1 to M2 

through IL-4 application had enhanced osteogenic ability 

of MC3T3-E1 cells in co-cultures. It has been confirmed 

by these experiments that inflammatory phase is necessary 

before healing process is initiated. 

Above all, action of these two types of macrophages 

had to be balanced. If M1 type macrophage activity 

overcomes macrophages of M2 type, that can lead to 

further tissue damaging, while the opposite case can 

lead to fibrosis [58]. 

During inflammatory phase macrophages remove 

necrotic tissue and secrete a number of pro-inflammatory 

cytokines such as TNF-α and IL-1. The aforementioned 

pro-inflammatory cytokines reach maximal concentration 

24 h after tissue injury [59]. At fracture site TNF-α can 

have a dual function that depends on which of the two cell 

receptor (TNFR1 and TNFR2) TNF-α binds [36]. IL-1 can 

exists in two forms: IL-1α and IL-1β. While IL-1α 

upregulates inflammation [60], IL-1β is thought to have a 

positive effect on mesenchymal stem cells differentiation 

into osteoblasts [61] and proliferation of osteoblast-like 

cells [43]. 

During remodeling phase TNF-α concentration rises 

again [59]. This cytokine binds to TNFR1 which exists 

on preosteoclasts’ surfaces [62] and in this way has 

impact on osteoclastogenesis [36]. At the same time, 

along with TNF-α, concentration of IL-1 increases and 

affects degradation of cartilage matrix during its 

maturation into bone matrix [36]. 

Macrophages as in vitro Model 

in Bone Tissue Engineering  

In some cases, when large bone defects occurred, bone 

tissue is not able to compensate the loss so it is 

necessary to use different bone substitutes. Bone 

substitutes most often include biomaterials based on 

tricalcium phosphates, hydroxyapatites, collagen and 

composites made from both inorganic and organic 

compounds. Also, 3D scaffolds are very useful because 

of their characteristic 3D structure that mimics the 

structure of living tissue. All of these materials can 

produce inflammatory reactions of macrophages in vivo 

when implanted into the defect area. Intensity of 

inflammation can greatly affect the course of the 

healing. Bearing in mind that injury itself creates local 

inflammatory reaction, if materials further stimulate this 

process, that could lead to the creation of fibrous tissue 

and inadequate healing process. Biomaterials that are 

nowadays increasingly used in bone tissue engineering 

are designed to have a stimulating effect on osteogenic 

process without having potential to induce or prolong 

inflammatory response of macrophages at injury site. 

Therefore, it is very important to show that biomaterials 
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are immunocompatible. For assessing the response of 

macrophages to different biomaterials, which can be 

potentially applied in bone tissue engineering and 

regenerative medicine, in vitro models of macrophages 

are used very often. The examination can be carried out 

on peritoneal macrophages, peripheral blood monocytes 

and different cell lines. Most commonly used cell line 

for these purposes is RAW 264.7 cell line. As previously 

stated in this paper, for the normal flow of healing 

process it is essential that there is a balance between M1 

and M2 macrophages. It is therefore important to examine 

how biomaterial of interest affects the polarization of 

macrophages [63–65]. Another very important 

characteristic that biomaterials should have is to induce 

controlled and moderate phagocytosis by macrophages. 

Different in vitro approaches of materials testing on 

macrophages are used, such as direct or indirect contact 

assays with both direct application of materials' particles 

or application of materials' extracts. In both assays 

phagocytosis can be measured quantitatively by using 

standard phagocytosis tests such as NBT test [5] or 

Neutral red uptake test, or analyzed through materials' 

particles uptake assay by transmission electron 

microscope (TEM) [65, 66]. For assessing the production 

of pro-inflammatory and anti-inflammatory cytokine 

release from macrophages stimulated with biomaterial 

particles or extracts, the most frequently performed 

method is determination of cytokine level by ELISA 

assay [67–70]. For this purpose, biological assay such as 

L929 assay can also be used [5]. Macrophages can also 

be used to simulate an inflammatory state in vitro in 

order to examine how different factors released from 

activated macrophages can influence the osteogenic 

differentiation of cells [71].  

Conclusion 

Science progress and better understanding of pleiotropic 

role of macrophages in a variety of biological and 

pathological processes put them at the top of “cell 

pyramid” because of their great influence on all aspects 

of tissue homeostasis and tissue reparation. It is 

believed that these phagocytes, as well as molecules 

they are secreting (especially during inflammatory 

phase), are the key factors for the successful bone tissue 

repair. Future research should be directed toward 

modulation of macrophage’s activity which might have 

positive influence on the final result of osteogenesis and 

osteoreparatory process. 
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