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Review Article 

LEPTIN: FROM APPETITE SUPPRESSION TO AUTOIMMUNITY 

Milica Ranđelović*, Tatjana M. Stoimenov-Jevtović  

Faculty of Medicine, University of Niš, Niš, Serbia 

Abstract. The hormone leptin is released by adipocytes accordingly to current energy stores to suppress appetite. Apart 

from this, leptin acts as a proinflammatory cytokine and strongly stimulates  inflammation. Immune-modulating properties 

are partly achieved by affecting T-cell maturation, polarization, and viability. Leptin rises inflammatory cells count, 

increases proinflammatory cytokine secretion, and impairs regulatory T-lymphocytes differentiation. Leptin secretion and 

signalization disturbances have recently started to be observed in the context of autoimmunity.  In this review, we discuss 

signaling pathways affected by the satiety hormone, its effect on T-lymphocyte maturation, differentiation and polarization, 

and relation to other immune-modulating agents. In the end, we highlight the rising evidence connecting hyperleptinemia 

state which is almost always related to obesity, with autoimmune disorders and take a brief overview of possible 

mechanisms behind leptin’s potency to induce self-reactivity. 
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Introduction 

Leptin (also: obese, satiety, starvation hormone) is a 

hormone made of 167 amino acids and released by adi-

pocytes accordingly to current energy stores. The main 

role of the satiety hormone is to suppress appetite by de-

livering  information about peripheral energy supplies to-

wards CNS, more precisely to hypothalamic nuclei. In 

this manner leptin indirectly modulates the metabolic rate 

of the body [1–3]. 

The leptin gene (LEP; OB) is located at chromosome 

7, while chromosome 1 carries the leptin receptor gene 

(LEPR; DB). Mutations in any of these genes result in 

obesity and multiple metabolic disorders related to leptin 

deficiency (ob/ob) or leptin resistance (db/db) [4]. The 

inability of leptin receptors to recognize and adequately 

respond to leptin stimulation is called leptin resistance. It 

is always coupled with hyperleptinemia as an attempt of 

the body to influence the hunger center in the hypothala-

mus and prevent further energy intake [5]. There are sev-

eral mechanisms of leptin resistance development, but 

the particularly interesting one is where the mutation oc-

curs only in receptors transporting leptin through the 

blood-brain barrier (BBB). The disorder results in periph-

eral hyperleptinemia with disabled leptin delivery to hy-

pothalamic nuclei and dysregulated appetite suppression 

leading to obesity [6]. Although the highest density of 

LepRb is found in hypothalamic nuclei managing the ap-

petite and energy expenditure, distribution of this recep-

tor shows that other areas of CNS, liver, pancreas, peri-

vascular intestinal tissue, heart, and immune cells are also 

liable to leptin [7]. The LEPR expression in immunologi-

cally active cells give leptin the immunomodulatory role 

and a whole new meaning to peripheral hyperleptinemia 

[8]. Considering the abundance of microinflammation in 

obese, the possible proinflammatory effect of leptin and 

hyperleptinemia  has recently started to be examined.    

Leptin Signaling Pathways 

So far, we  have been familiar with six isoforms of the 

leptin receptor gene, of which one is “long” (LepRb), 

while the rest are “short” (LepRa, LepRc, LepRd, LepRe, 

LepRf) [9]. LepRb is a transmembrane form able to con-

vey leptin signal towards the nucleus. Short receptor 

forms take part in leptin transport through BBB, leptin 

metabolism, and elimination [10]. 

Leptin binding to LepRb is followed by the activation of 

three signaling pathways: JAK-STAT, ERK, and PI3K. The 

first step in leptin-dependent signal transduction is auto-

phosphorylation of janus kinase 2 (JAK2) attached to the in-

tracellular part of LepRb. JAK2 directly phosphorylates 

three tyrosine residues: Tyr985, Tyr1077 and Tyr1138, also 

located at the intracellular portion of the receptor. Phosphor-

ylated tyrosine residues further initiate activation of next-

generation messengers (e.g. Tyr1138→STAT3 - signal 

transducer and activator of transcription 3) which travel to 

the nucleus and trigger transcription of various genes [11]. 

So far, studies have confirmed that leptin affects transcrip-

tion of socs3, pomc, cart, agrp, and npy. SOCS3 (suppressor 

of cytokine signaling 3) plays an important role in the auto-

regulation of leptin signaling ince its binding to phosphory-

lated Tyr985 leads toJAK2 inhibition [12]. Phosphorylated 

Tyr985 also positively regulates the ERK pathway which is 

highly important in the differentiation, metabolism, and vi-

ability of T-helper lymphocytes (Th) [6]. The third, and the 
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fastest leptin signaling pathway starts with phosphorylation 

of insulin-substrate receptor (IRS) by JAK2, that via PI3K 

triggers two axes: Akt-FoxO1 and mTORC1. Their domi-

nant effect on cell enzymatic systems over transcription reg-

ulation results in shortly notable changes [13].  

Considering intracellular pathways activated by the 

obese hormone, as well as the LepRb distribution, leptin 

turns into much more than the plain messenger in the 

chain of appetite control. Apart from the primary role in 

energy expenditure adjustment, its involvement in immu-

nological processes  has gained importance lately, espe-

cially in regulatory T-lymphocytes (Tregs) maturation 

and favored proinflammatory over anti-inflammatory re-

sponse [11, 14].  

Leptin as a Proinflammatory Agent 

The satiety hormone brings the signal about sufficient en-

ergy supplies to CNS so it can coordinate immune func-

tions, as directing energy towards immune cells matura-

tion and specialization or uplifting and maintaining the 

immune reaction. Further, LepRb is found in certain 

types of immune cells (neutrophils, monocytes, macro-

phages, T-lymphocytes, B-lymphocytes, mastocytes, 

dendritic cells, natural killer cells) which implies leptin’s 

direct effect on counted cells metabolism and functions 

[8, 15]. Although various immune cells are affected by 

leptin, it dominantly supports proinflammatory T-cells 

subtypes (Th1, Th17, Th22, Th9)  and simultaneously sup-

press anti-inflammatory Th2 cells and Tregs [16]. Also, 

proinflammatory cytokines: LPS, TNF-α, and Il-1 were 

shown to increase leptin secretion, so  its involvement in 

inflammation  became even more certain [17, 18].  

Leptin stimulates the expression of IL-7, also familiar 

as a thymocyte growth factor, in medullary thymic epithe-

lial cells. This role in T-lymphocyte maturation is con-

firmed in leptin-deficient conditions which are always 

coupled with thymus atrophy [19, 20]. Leptin also affects 

matured, peripheral T-cells by managing their prolifera-

tion, differentiation, and viability [16]. Hence, leptin in-

creases the proliferation of naïve cells and their differenti-

ation towards proinflammatory phenotypes, while memory 

T-cells production remains suppressed under leptin impact 

[21, 22]. Also, T-cells viability is significantly improved by 

leptin-dependent mTOR activation [23]. 

Th1/Th2 polarization is dependent on leptin signal-

ization and it significantly decreases in leptin-deficient 

conditions. However, Th1 response is prominently sup-

ported and Th2 response is suppressed by the satiety hor-

mone [24]. Additionally, leptin promotes the production 

of several proinflammatory cytokines: Il-1, TNF-α, INF-

γ, IL-2, IL-6, IL-12, IL-17, IL-21, and simultaneously de-

creases secretion of IL-10 and IL-4, known to suppress 

inflammation and restore pre-inflammatory, physiologi-

cal condition [25]. 

In addition to proinflammatory, leptin shows autoim-

mune features as well. Tregs are Th subset supervising 

lymphocyte reactivity, peripheral tolerance to own anti-

gens, and maintenance of an adequate inflammatory re-

action with consequent resolution [26]. Considering the 

origin, Tregs are divided into two subgroups: naturally 

occurring Tregs (nTregs) originating from precursor cells 

in the thymus, and inducible Tregs (iTregs) formed from 

naïve T-helper cell under certain conditions [27]. Leptin 

can affect nTregs differentiation in the following mecha-

nism: leptin induces hypoxia inducible factor (HIF) -1α 

expression, leading to FoxP3 (master regulator of differ-

entiation and function in Tregs) degradation and Tregs 

inhibition [28]. Oppositely, leptin-stimulated HIF-1α ac-

tivity in Th17 subset ameliorates glycolysis and increases 

energy for proliferation, maturation, and activity [24, 29, 

30]. More importantly, HIF-1α provokes the secretion of 

pro-autoimmune cytokines (Il-17, IL-21,and IL-22) in 

Th17 precursor and its differentiation. Also, the ERK 

pathway activated by leptin-dependent Tyr985 phosphor-

ylation maintains Th17 inflammatory response [31, 32]. 

The main producing cytokine in this cell subtype, IL-17, 

was shown to promote autoimmune response and inflam-

mation [33, 34]. Figure 1 shows leptin impact on nTreg 

and Th17 precursors. 

The urgency of understanding leptin’s proinflamma-

tory action and a strong inhibiting effect on inflammatory 

process resolution rises considering the number of obese 

patients with central leptin resistance and multiple meta-

bolic disorders. Since leptin cannot pass BBB, the patient 

feels hunger, keeps ingesting food, and stores the energy, 

making adipocytes secrete more leptin which expresses 

its actions peripherally, on immune cells. Joining hyper-

leptinemia to existing metabolic disorders (dyslipidemia, 

hyperinsulinemia, hypertension, increased production of 

proinflammatory cytokines with TNF-α, IL-1 and IL-6 

on the lead, etc.), makes a perfect base for multiple focal 

microinflammation with the tendency to autoimmune re-

action development, and decreased potency of immune 

system monitoring.  

Leptin in Autoimmune Diseases 

The leptin role in autoimmunity may be discussed from 

three aspects: (a) the Tregs suppression, (b) the Th17 

stimulation, and (c) an increase in proinflammatory cyto-

kines secretion [35, 36]. Such an environment makes a 

perfect lining for autoimmune reaction, as soon as plenty 

of metabolic disturbances are also seen contemporary 

with leptin sensitivity disorders, as mentioned above. 

Yet, there are only a few clinical studies connecting lep-

tin with autoimmune diseases since the role of the starva-

tion hormone as an immunomodulator has recently 

started to be examined.     

Hyperleptinemia related to obesity was shown to be  

part of the pathogenesis in several autoimmune diseases, 

such as rheumatoid arthritis (RA), multiple sclerosis 

(MS), psoriasis, autoimmune thyroiditis, and type 1 dia-

betes mellitus (T1DM). Moreover, inflammatory bowel 

diseases (IBD) and systemic lupus erythematosus (SLE) 

activity seemed to be dependent on leptin concentration 

as well [37]. 
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 A positive association between RA and obesity has 

been observed earlier [38]. A milieu of proinflammatory 

cytokines in the environment of dyslipidemia has a cer-

tain impact on synovial destruction and chondrocyte phe-

notype loss in RA. As a potent adipokine, leptin stimu-

lates the secretion of NOS, IFN-γ,IL-1, and metallopro-

teinases in chondrocytes, as well as the activity of auto-

reactive T lymphocytes, causing the deterioration of the 

disease [39]. Clinical studies observed that RA activity 

was positively related to leptin serum level since the se-

cretion of pathogenic enzymes and cytokines was 

strongly ameliorated by leptin [40, 41]. Although the 

meta-analysis in 2016 confirmed a positive correlation 

between serum leptin level and disease activity in hu-

mans [42], the understanding of leptin’s impact on the 

disease activity is not yet fully understood. 

In MS both serum and liquor leptin levels were ele-

vated and correlated with Th17 count and IFN-γ activity 

in neural structures [43]. An increased serum leptin level 

in children is considered to be one of several obesity-re-

lated factors related to a twofold higher risk of MS onset 

in adulthood, as reported in several longitudinal studies 

[44, 45]. 

Further, in animals fed with high-fat diet leptin 

caused a significant increase in IFN-γ production and 

T1DM rapid onset [14]. As animal studies have shown, 

leptin administration is capable of inducing spontaneous 

T1DM in non-obese animals [46], while human studies 

reveal hyperleptinemia state in children suffering from 

T1DM [47]. However, the complexity standing behind 

the leptin’s effect on glucose metabolism on the one 

hand, and leptin’s proinflammatory effects on the other, 

should be briefly considered while summarizing a pro-

tentional leptin’s role in T1DM onset and course.  

Leptin-dependent Th17 inflammatory reaction and 

IL-17 hyperproduction were among the leading causes of 

autoimmune thyroiditis [48, 49], MS [50], SLE [51, 52], 

and many other systemic and organic autoimmune dis-

eases [53]. Although the crucial role of this adipokine in 

the development remains unclear, its impact on differen-

tiation and survival of autoreactive T lymphocytes cannot 

be neglected. A meta-analysis including 1333 patients 

suffering from SLE and 1048 healthy controls concluded 

that serum leptin level was significantly increased in SLE 

patients [54]. In particular, deterioration in renal function 

seems to be in strong positive relation with leptin secre-

tion [55].  

Weight loss, followed by basal leptin decrease, 

showed amelioration in the course of the autoimmune 

diseases and increased Tregs count [56]. Finally, studies 

also confirmed that experimental models carrying ob/ob 

genotype were protected from certain autoimmune dis-

 

Fig. 1 Leptin impairs nTreg maturation and promotes Th17 differentiation. 
Figure legend: Leptin increases HIF-1α in T-helper precursor cells directly by binding to its own receptor (LepRb), and indirectly 

by stimulating IL-6 production. In nTreg precursors HIF-1α binds to FoxP3 and promotes its degradation, delaying the cell 

maturation. Oppositely, the differentiation of Th17 is encouraged by HIF-1α relaying to its stimulating effect on IL-17 production. 

FoxP3 and IL-17 are regulators of differentiation in these two cell subtypes. 

Abbreviations: LepR – leptin receptor, IL-6 R – interleukin-6 receptor; JAK2 – janus kinase 2; HIF-1α - intracellular hypoxia 

inducible factor 1α; STAT3 - signal transducer and activator of transcription 3; ERK – extracellular signal regulated kinase; FoxP3 

– forkhead box P3 protein; mTOR – mammalian target of rapamycin.   
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eases, like experimental autoimmune encephalomyelitis 

(equal to MS in humans) [57], SLE [58], and chronic in-

flammation in distinct tissues [59–61].  

Conclusion 

Low grade, sterile inflammation coupled with extracellu-

lar matrix remodeling and fibrosis in adipose tissue oc-

curring in obesity leads to dysregulation of adipokines 

secretion and permanently active immune response. Dis-

turbance in adipokines relation is followed by systemic 

inflammation and obesity comorbidities. For example, 

leptin, resistin, TNF-α, and IL-6 serum levels are ele-

vated in obesity, leading to oxidative stress, angiogene-

sis, and thrombosis [62–64]. On the other hand, 

adiponectin, known by its anti-inflammatory properties is 

decreased in conditions of adipose inflammation [65]. With 

increased proinflammatory immune modulators supporting 

not only inflammation but autoreactivity as well, obesity 

becomes one of the risk factors for autoimmune disorders. 

Theoretically, cell types and pathways affected by the 

satiety hormone make leptin a remarkable player in auto-

immunity [11, 14, 29]. Its dominant effect on Th1 versus 

Th2 differentiation, Tregs suppression, and macrophage 

stimulation inflames immune response. On the other 

hand, conditions with the lack of leptin, like lipid dystro-

phia or deletion of the leptin gene, are linked to a higher 

risk of fatal outcome due to infection. This could be at-

tributed to irregular thymic function, T lymphocyte dif-

ferentiation, disturbances in the function of other immune 

cells like macrophages, neutrophils, and NK cells. Cur-

rent findings highlight leptin’s role in the proper devel-

opment of immune response. Also, conditions with ele-

vated leptin secretion, like leptin resistance and obesity, 

are followed by multiple immune defects often ending 

with cardiovascular diseases and autoimmune disorders. 

Clinical studies on humans are needed in order to reveal 

the exact leptin’s role in the interplay of many other me-

diators secreted in the obesity state. One is sure for now: 

leptin is much more than just a plain appetite suppressor. 
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