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Abstract. Our gut harbours around 1014 bacteria of more than 1000 species, accounting for approximately 2 kg of 

biomass. The gut microbiome plays several vital functions in processes such as the development of the immune system, 

food digestion and protection against pathogens. For these functions to be beneficial for both host and microbiome, 

interactions are tightly regulated. Gut and immune cells continuously interact to distinguish among commensal 

microbiota, harmless foodstuff, and pathogens. A fine balance between inflammatory and anti-inflammatory state is 

fundamental to protect intestinal homeostasis. Nonsteroidal anti-inflammatories (NSAIDs) are a class of drugs used for 

management of pain and inflammation. These compounds have heterologous structures but similar therapeutic activities. 

The target of all NSAIDs are the isoforms of cyclooxygenase enzymes (COX): the primarily constitutive form COX-1, and 

the inducible from COX-2. Both isoforms catalyse the conversion of arachidonic acid to PGH2, the immediate substrate 

for specific prostaglandin and thromboxane synthesis. The gut microbiota plays a role in drug metabolism,  resulting in 

altered bioavailability of these compounds. Additionally, complex host-microbiome interactions lead to modified 

xenobiotic metabolism and altered expression of genes involved in drug metabolism. These effects can be at gut tissue-

level, or distant, including in the liver. Besides the gut microbiome influencing drug metabolism, drugs also impact the 

microbial communities in the gut. As different drugs exert selective pressures on the gut microbiome,  understanding this 

bidirectional relationship is crucial for developing effective therapies for managing chronic inflammation. 
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Introduction

 

The gut microbiota includes more than 100 trillion bac-

terial cells [1], which can be divided into six dominant 

phyla: Firmicutes, Bacteroidetes and Actinobacteria, 

and the less abundant Proteobacteria, Fusobacteria and 

Verrucomicrobia [2]. The human microbiome is not 

only composed of collective genomes from bacteria, but 

also from those of archaea, viruses, and eukaryotes col-

onizing the gut [3]. The composition of the microbiota 

will depend on environmental factors, diet, age and host 

genetics [4]. Inter- and intra-individual differences are 

significantly prevalent, although several species such as 

Faecalibacterium prausnitzii, Roseburia intestinalis and 

Bacteriodes uniformis have been consistently identified 

in large scale screenings. The gut microbiome trans-

forms indigestible substrates from food, such as xy-

loglucans, into short chain fatty acids, which can be 

used as energy source for the colonocytes [5]. These 

metabolic activities may directly or indirectly impact 

health and disease in the host. The commensal microbi-

ota can train the immune system to induce regulatory T 

cells, which then prompt tolerance to these bacteria [6]. 
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In this way, commensal-induced immunity contributes 

to maintain mucosal tolerance and protect the host from 

disease [7]. Such exchanges are tightly regulated: gut 

and immune cells continuously interact to distinguish 

between commensal microbiota, harmless foodstuff, and 

pathogens. A fine balance between inflammatory and 

anti-inflammatory status is needed to preserve intestinal 

homeostasis [8]. 

Interest in developing colon-targeted drug delivery 

systems has increased in recent years [9]. These 

formulations are intended for gastrointestinal-related 

diseases, such as colorectal cancer (CRC) and inflam-

matory bowel disease (IBD). Despite the numerous re-

search in this field, there are still questions that need to 

be answered, as differences in microbiome composition 

may ultimately impact drug metabolism between sub-

jects [10]. For example, which characteristics of the 

microbiome contribute to the pharmacokinetic differ-

ences between individuals? Does the region in the colon 

reflect a specific colonization pattern, which will later 

trigger metabolic differences? Do long-term alterations 

in the gut microbiome generate metabolic dysbiosis? If 

so, to what extent? Gaining insight into the gut meta-

bolic potency is essential, because characterization of 

the players involved in drug disposition in the gut will 

contribute to ensure optimal drug efficacy and safety 

profile. 

Existing colon-specific drug delivery systems hold 

some limitations. Besides the microbial influence on 



86 F. Mermans, E. Heiremans, M. Van Belleghem, A. Meersschaut, E. Hernandez-Sanabria 

drug bioavailability and pharmacokinetics, low solubil-

ity in presence of bile acids and the small aqueous vol-

ume in the colon may hinder drug efficacy [11]. Moreo-

ver, understanding drug transporter activity is funda-

mental to improve drug passive permeability. Current 

models to predict drug efficacy consider plasma con-

centrations to describe the pharmacokinetics and phar-

macodynamics. However, drugs designed for targeting 

the gut undergo an extensive first pass metabolic clear-

ance. This implies that the relation between plasma con-

centrations and efficacy has a low predictive value. For 

this reason, investigating microbiome-drug-host inter-

actions towards improving ADME and safety responses 

of intestinal targets is fundamental [12]. 

Xenobiotic Metabolism of the Gut 

Microbiome 

Chemotherapeutic outcomes are mainly linked to human 

genetic polymorphisms [13], but the impact of the hu-

man gut microbiome has been overlooked, as it has been 

even called the “forgotten organ”. Although microbi-

ome research has flourished in recent years, the associ-

ation between the microbiota and xenobiotics metabo-

lism remains underexplored. The host cytochrome 

CYP2C9 predominantly eliminates lipophilic drugs 

through the liver, whereas orally administered drugs 

encounter the gut microbiota before reaching host tis-

sues [10]. This first-pass metabolism by the colonic 

microbiota must be considered, as the metabolites gen-

erated from this process can impact drug activity, re-

sulting in toxicity for the host and further inflammation, 

or altering gut microbiota and producing dysbiosis [14]. 

The anaerobic environment of the human gut pre-

vents the microbial use of oxygen as terminal electron 

acceptor for oxidation [10, 14]. Thus, anaerobic respira-

tion and increase in microbial growth are facilitated by 

the two main metabolic transformations: reduction pro-

vides alternative electron acceptors, while hydrolysis 

ensures substrates that can be used by microorganisms 

[15]. Since these two reaction types are commonly ob-

served, core microbial species or core gene families 

performing such functions are hypothesized to partici-

pate [16]. 

Links between gut bacteria and drug metabolism are 

via direct and indirect mechanisms. Direct mechanisms 

involve the transformation of the drug into metabolites 

with a different effect. Conversely, indirect mechanisms 

are those influencing drug transport or metabolism [14]. 

Knowledge of these metabolic pathways is fundamental 

to predict whether drug metabolism and disposal will be 

impacted.  

Additionally, biliary excretion is essential for drug 

recirculation and ultimate metabolism. In this respect, β-

glucuronidases can play a key role, because they are 

important for host drug detoxification [17]. Glucuronic 

acid is coupled to several substrates in the liver, thereby 

increasing molecular weight and solubility. Conse-

quently, elimination through urine or faeces is en-

hanced, and gut bacteria can reactivate these products, 

generating higher toxicity. Likewise, non-steroidal anti-

inflammatory drugs (NSAIDs) have side-effects [18]. 

Microbial β-glucuronidases can separate the aglycone 

from the glucuronide, so the aglycone is absorbed into 

the enterocytes and transformed into reactive metabo-

lites, harming the mitochondria and the endoplasmic 

reticulum. In this way, not only the host detoxification 

pathway is diminished, but also inflammation is evoked 

as a result of decreased mucosal integrity [19]. The im-

pact of the gut microbiota on hepatic drug-processing 

genes is enzyme-specific and age and sex-dependent, 

with patterns varying throughout life span and devel-

opmental periods, and xenobiotic pathways significantly 

downregulated in male mice at 90 days of age [20]. 

Moreover, probiotic interventions have confirmed 

that microbiome manipulations not involving antibiotics 

can influence the expression of hepatic drug–processing 

genes during adulthood [21]. Poorly absorbed antibiot-

ics such as vancomycin and rifaximin, may indirectly 

modulate hepatic CYP gene expression, as they bypass 

hepatic metabolism and impact gut bacteria [22]. Under-

standing the outcomes of indirect host–microbiome-

drug interactions occurring because of drug use, con-

sumption of dietary supplements, or environmental 

toxins should be considered in drug development, safety 

pharmacology, and pharmacokinetic profiling [20]. 

The Gut Microbiome and Xenobiotic 

Metabolism during Chronic Inflammation 

Although research efforts are ongoing to more precisely 

define a healthy gut microbiome [23], one of the most 

frequently reported findings across an array of disorders 

is a narrowing of gut microbiome diversity often ac-

companied by more specific but less consistent compo-

sitional alterations at various taxonomic levels. Dysbio-

sis refers to the state where the composition of the mi-

crobiome is disrupted [24, 25], providing continuous 

immunological stimulation and leading to anomalies in 

the immune response. The polarized induction of im-

mune cells and the subsequent increased amounts of 

pro-inflammatory T cells may fuel the development and 

severity of the disease. Excessive inflammation results 

in loss of epithelial integrity, which in turn leads to fur-

ther bacterial translocation and thus further induction of 

inflammation [8, 24]. This condition is observed in a 

number of gastrointestinal diseases such as inflamma-

tory bowel disease (IBD) and colorectal cancer (CRC) 

[26], central nervous system disorders such as depres-

sion and schizophrenia [27], obesity [28], diabetes 

mellitus [29], cardiovascular disorders [30], rheumatoid 

arthritis [31] and multiple sclerosis [24], and asthma and 

atopy in children [32]. Research found that Faecalibacte-

rium prausnitzii is reduced in patients with ulcerative 

colitis, another chronic inflammatory condition of the 

colon [33]. This bacterium has been reported to promote 

the accumulation of regulatory T cells (Treg), which 

contribute to anti-inflammatory responses [34]. On the 
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contrary, Enterobacteriaceae, Bacteroides, Clostridium 

ramosum and Akkermansia muciniphila are increasingly 

present in patients with IBD. These organisms have also 

been linked with increased inflammation [35]. Although 

the importance of the gut microbiome in chronic 

inflammatory conditions has been reported [36], it is 

still unclear whether dysbiosis is a consequence or a 

cause of associated diseases [8, 24].  

Gut microbiota are known to play a role in the me-

tabolism of drugs, hereby having an effect on the host 

health . Many of the therapeutic interventions for 

chronic disorders are subject to biotransformation by the 

gut microbiome, and the functional implications of 

changes in gut bacterial communities for xenobiotic 

metabolism are yet to be described. The gut microbiome 

can affect drug therapy via direct or indirect mecha-

nisms. The direct mechanisms compromise metaboliza-

tion of the drugs by the microbiota, resulting in altered 

bioavailability of these compounds. Indirect mecha-

nisms include complex host-microbiome interactions, 

resulting in a modified xenobiotic metabolism of the host 

[10]. In the latter case, one of the routes is that microbiota 

affect host gene expression involved in drug metabolism. 

These effects can be either local, meaning in the gut 

tissue [37], or distant, including in the liver [38]. 
Understanding how alterations in gut microbiota 

profiles influence host response to chemotherapeutic 
drugs may have important clinical implications. Strati-
fying patients based on their gut microbiome composi-
tion may assist in identifying responders and non-re-
sponders to immunotherapy [39] for the treatment of 
epithelial tumours and melanomas [20, 40]. Other 
mechanisms modulated by the gut microbiome include 
the translocation and immunomodulation following 
interventions with cyclophosphamide, doxorubicin, and 
anti–CLTA-4 therapies [41].  

Dynamics of Nonsteroidal Anti-Inflammatory 

Drugs (NSAIDs) towards the Gut 

Microbiome 

Nonsteroidal anti-inflammatory drugs (NSAIDs) are a 

class of drugs used for inflammation management. The 

compounds in this group are heterologous in structure 

but show similar therapeutic activity [42]. The target of 

all NSAIDs are cyclooxygenase enzymes (COX). There 

are two isoforms of COX, the primarily constitutive 

form COX-1, and the inducible from COX-2 [42]. 

COX-1 and COX-2 both catalyse the conversion of ara-

chidonic acid to PGH2 [43]. PGH2 is the immediate 

substrate for some cell specific prostaglandin and 

thromboxane synthases [42].  

COX-1 is expressed in different tissues such as the 

kidneys, lungs, stomach, ileum and colon [44]. It is con-

sidered to be a “housekeeping” enzyme, playing an im-

portant role in the production of prostaglandins that 

serve homeostatic functions [45]. These prostaglandins, 

among others, maintain the integrity of the gastric mu-

cosa, mediate normal platelet function and regulate re-

nal blood flow [46]. COX-2 on the other hand, is nor-

mally not expressed in tissues with the exception of the 

macula densa of the brain and kidney, the placenta, the 

vessel walls and the heart, where it is believed to play a 

role in homeostatic functions [47]. This isoform of the 

enzyme is upregulated in response to tissue damage or 

the presence of pro-inflammatory cytokines [43]. In 

turn, COX-2 is responsible for the generation of pro-

inflammatory prostaglandins, thus contributing to in-

flammation [45]. One of these prostaglandins is PGE2, 

which is implicated in carcinogenesis. COX-2 expres-

sion is found to be increased in colorectal cancer caus-

ing proliferation, enhanced angiogenesis and suppres-

sion [48] of apoptosis (Pugh & Thomas, 1994; Surh et 

al., 2001).Thus, COX-2 is the main target of chronic 

inflammation therapy using non-steroidal anti-inflam-

matory drugs (Fig. 1). 

 

Fig. 1 Isoforms of COX enzymes and their functions 

Orally administered drugs are subject to the so 

called “first-pass metabolism”, where the gut microbi-

ome plays a crucial part. Prior to reaching the target 

tissue, microbiota and liver metabolize the drugs, alter-

ing their bioactivity [10]. The bacterial metabolism re-

sults in three scenarios, namely activation, inactivation, 

and increased toxicity of the drug. In the first situation, 

the pharmaceutical compound is activated into its thera-

peutic window, resulting in increased drug efficacy. An 

example is the described transformation of sulindac to 

its bioactive sulphide metabolite. In the case of inacti-

vation, the availability of the active drug is lowered 

resulting in decrease or loss of therapeutic effect. For 

instance, microbial arylamine N-acetyltransferases in-

activate the bioactive component of the anti-inflamma-

tory drug sulfasalazine [14], while the NSAID diclo-

fenac can exert toxic effects after being glucuronidated 

in the liver by the host and then being exposed to mi-

crobial β-glucoronidases in the gut [10, 18]. In these 

scenarios, activity of the gut microbiome results in in-

creased toxicity and adverse effects for the host. In ad-

dition, simultaneous use of probiotics significantly in-

creased the microbiota‐mediated enzymatic degradation 

of the antipyretic and analgesic paracetamol  [20, 39]. 

Similarly, short-term administration of a probiotic cocktail 

of L. acidophilus, B. lactis and Streptococcus salivarius 

to rats significantly increased azoreductase activity in ex 

vivo incubation of sulfasalazine with colon contents, 

ultimately impacting the metabolism of this drug [49]. 
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Besides the gut microbiome influencing drug metab-

olism, drugs also impact the microbial communities in 

the gut. As discussed earlier, a shift in gut microbiome, 

and more specifically dysbiosis, is linked to disease. 

Therefore, understanding the effects of drugs on the gut 

microbiota is crucial for providing suitable therapies [14]. 

Obvious examples include the use of antibiotics, resulting 

in altered gut microbiome [50]. NSAIDs have been re-

ported to impact the gut microbiome and changes in 

composition have been observed [51] depending on the 

NSAID administered. Subjects exposed to aspirin showed 

greater abundance in Prevotella spp., Bacteroides spp., 

Barnesiella sp. and Ruminococcaceae. Celecoxib and 

ibuprofen users showed enrichment in Enterobacteriaceae 

and Acidaminococcaceae. Ibuprofen users were also en-

riched in Propionibacteriaceae, Pseudomonadaceae, 

Puniceicoccaceae and Rikenellaceae [52]. In contrast, a 

different study observed no effects on the microbiome 

composition after administration of celecoxib [53]. Sul-

fasalazine induced the expression of thioredoxins and 

nitrate reductases, while nizatidine, subject to bacterially 

mediated N‐oxide bond cleavage, up‐regulated the 

expression of drug enzymes and transporters acting on 

nitrogen bonds  [54]. This finding supports the earlier 

hypothesis that drugs may shift the microbiota to favour 

the abundance of taxa involved in its metabolism. Fur-

thermore, this altered metabolic capacity of the micro-

biota could consequently affect not only the pharmaco-

kinetics of subsequent doses of the drug itself (a phenom-

enon referred to as autoinduction) but also the pharmaco-

kinetics of co‐administered medication may be act as 

substrates of the same metabolic pathway or transporter. 

Production of diet-derived by-products such as like p-

cresol (from protein digestion) can affect drug metabo-

lism. Research showed that acetaminophen, an analgesic 

and antipyretic drug, underwent less sulfonation due to 

competitive O-sulfonation of p-cresol [55]. 

COX-1 plays a role in guaranteeing the mucosal in-

tegrity of the gastrointestinal tract and thus, non-specific 

NSAIDs blocking  both isoforms of COX have been 

linked with intestinal damage [19]. These environmental 

changes place a selective pressure on the microbiome 

resulting in fluctuations in microbial composition [56]. 

Blocking intestinal bacterial enzymatic functions has 

been proposed to amend intestinal homeostasis, while 

enhancing efficacy and decreasing toxicity of IBD ther-

apies, as realised for cancer therapies [4, 17]. Precision 

editing of the gut microbiota by tungstate ameliorates 

experimental gut inflammation through preventing the 

dysbiotic expansion of Enterobacteriaceae [57]. This is 

merely an example of the complex host-microbiome-

drug interactions and it is likely that different drugs ex-

ert selective pressures on the gut microbiome through 

different mechanisms [14]. The use of designer lactic 

acid bacteria as factories for the production of antimi-

crobial and anti-inflammatory biomolecules may also 

have potential for the future treatment of infectious dis-

eases, cancer, and metabolic diseases [54, 58]. 

Conclusion 

It is clear that the gut microbiome play an enormous 

role in patient health, but also in pharmacokinetic and 

pharmacodynamic drug response. Before official ap-

proval, government agencies such as the FDA run three 

phases of clinical trials, where pharmacokinetics, phar-

macodynamics, and safety of a drug are determined. 

However, gut bacteria is not currently considered within 

these evaluations, although the microbiome is the first 

checkpoint following drug intake. In vitro studies have 

shown that some NSAIDs can be metabolized by bacte-

ria, potentially jeopardizing its anti-inflammatory ef-

fects. More than 60 interactions between drugs and the 

microbiome have already been documented. Unfortu-

nately, most of the underlying molecular and genetic 

mechanisms remain unclear. The PharmacoMicrobi-

omics online database was launched in 2011 to assem-

ble the literature about those interactions [59]. Future 

efforts may focus on combining available information 

about the drug-bug interactions on biochemical path-

ways with existing genomic, pharmacogenomic and 

human microbiome sequence databases [52].  

Personalized medicine has achieved  excellent re-

sults in some areas of medicine, such as oncology [4]. 

Yet, genetic factors can influence up to 50% of therapy 

responses [13]. It is at this crossroads that recent discov-

eries on the roles of gut microbiota have become para-

mount [60]. Stratification of patients based on their gut 

microbiome may improve treatment accuracy [17] and 

cost-effectiveness [61]. A combined strategy to restore 

eubiosis may require synchronised targeting of domi-

nant pathobionts and replacing missing beneficial spe-

cies or their functions by manipulating the bacterial 

microbiota with dietary strategies. Thus, homeostatic 

immune responses, and mucosal barrier function would 

be reconditioned. This integrated approach may result 

safer than the current lifelong treatments with immuno-

suppressive drugs, once remission has been accom-

plished by traditional therapies. 

Understanding how our "second genome" [4] is in-

volved in therapeutic responses could pave the way for 

approaches using the intestinal microbiome as the target 

for modulating drug efficacy and enabling tailored 

treatments. Revealing the specific mechanisms driving 

defective bacteria–host interactions will enable preci-

sion editing of gut microbiota functionality and compo-

sition for ameliorating chronic inflammatory diseases.  
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