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Abstract. Two-dimensional dice lattice can be dressed by artificial flux to host the Aharonov-

Bohm (AB) caging effect resulting in the occurrence of a fully flatband spectrum. Here, we 

focus on the dynamics of flatband compact localized eigenmodes shared by a few unit cells in 

two snowflake configurations. We numerically show the possibility of dynamically stable 

propagation of two types of compact localized complexes by tuning the nonlinearity. The AB 

caging is imprinted in complexes dynamics regardless of the type and strength of nonlinearity. 

On the other hand, nonlinearity can only affect the appearance of the caged complex. These 

findings open a new route for the manipulation of structured light in photonic systems. 
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1. INTRODUCTION 

Flatband (FB) photonic lattices have been captivating the attention of investigators in 

photonics by offering an easy, manageable platform for testing the possibilities to slow, 

trap and manipulate light propagation by mimicking the basic algebraic, logical operations 

and providing the efficient information storage (Leykam et al., 2018, Morales-Inostroza et 

al., 2016, Zhang and Jin, 2020, He et al. 2021, Vicencio, 2021). Regarding this, playing with 

individual photons is, nowadays, the leading and promising experimental procedure toward the 

realization of efficient quantum computing with the potential to jump over the limitations 

of procedures based on spin/atomic systems (Leykam and Flach, 2018). Moreover, the 
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manipulation of photon lattice geometry and topology provides the test bed for 

understanding the topological phase transitions in condensed matter systems (Lisi et al., 

2021, Derzhko et al., 2015, Aoki, 2020, Yang et al., 2015, Aharonov and Bohm, 1959). 
The main property of the FB systems is the absence of dispersion which opens the door 

to an amazing world of fully degenerate energy bands and offers the possibility for tailoring 

the light/photon properties by forming compactons – isolated localized structures highly 

robust to environmental noise. Due to their easy manipulation, photonic lattices are an ideal 

platform for creating FB spectrums. Their geometry provides the possibility to design 

artificial gage field effects equivalent to the magnetic field flux, i.e. the spin-orbit 

interaction in atomic systems (Lisi, et al., 2021, Jörg, et al., 2020, Parameswaran et al. 

2013). A few experimental techniques providing this in practice are based on the coupled 

split-ring resonators (Leykam and Yuan, 2020, Liang and Chong, 2013, Leykam et al., 

2017, Mittal et al., 2016) and wave-guide networks (Morales-Inostroza et al., 2016, 

Mukherjee et al., 2016, Real, et al., 2017, Vicencio et al., 2015) Peculiar in the flatband world 

are systems with a fully flat spectrum which are usually related to the effect of the Aharonov-

Bohm (AB) caging (Mukherjee et al., 2016, Vidal, J. et al., 2001, Danieli et al., 2021, Vidal et 

al., 1998). The study of AB effects in photonic lattices dates from the paper of Longhi (Longhi, 

2014) and is widely exploited in 1D and 2D photonic lattice systems (Danieli et al., 2021, 

Verboven, 2016). We mention the lattice shaking as a mechanism for constructing a net 

flux through a plaquette which is equivalent to adding a time-periodic on-site modulation term 

to Hamiltonian (Floquet lattices) (Creffield et al., 2016). Recently, the FB system is probed by 

nonlinearity in order to find new possibilities to control light of huge intensity (Gligorić et al., 

2019). 
In this paper, we study an interesting aspect of the compact localized modes (CLMs) in 

two-dimensional (2D) dice lattices dressed by artificial flux. This lattice can host six FBs 

(Zhang and Jin, 2020) in the presence of local nonlinearity. The model equations and linear 

lattice spectrum properties are described in Section 2. We test the dynamics of the 

snowflake-like CLMs hosted by a few unit cells in the linear and nonlinear regimes in 

Section 3. The goal is to confront the AB caging to nonlinearity in order to distinguish the 

favorable conditions for designing the localized modes with user-friendly properties. 

Concluding remarks are given in Section 4. 

2. MODEL  

The dice lattice is a paradigm of the 2D flux-dressed photonic lattices which mimic the 

topological phases in atomic systems (Vidal et al., 2001, Danieli et al., 2021, Vidal et al., 

1998, Zhang and Jin, 2020, Verboven, 2016). Its geometry is schematically shown in Fig. 

1 and it can be constructed by overlapping two hexagonal lattices in the flux-free case. In 

the presence of gauge field-induced artificial magnetic flux, the unit cell can be identified 

as a structure consisting of six sites, denoted by a, b, c, d, e, and f, which are linearly 

coupled by complex hopping tei(/2), as shown in Fig. 1, where t is the hopping parameter 

and the  is artificial flux.  

Sites c and d are 6-fold coordinated (hub-sublattices) and sites a, b, e, and f are 3-fold 

coordinated (rim-sublattices). Each diamond plaquette, which is the building block of the 
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dice lattice encloses a half-quantum artificial magnetic flux π or –π (yellow and green 

diamonds in Fig. 1, respectively).    

 
Fig. 1 Schematic representation of the 2D dice lattice. The unit cell of the dice lattice is 

denoted by a dashed rectangle. The sites are denoted with a, b, c, d, e, and f and 𝑛,𝑚 

are the cell indices. The vectors vx and vy in the horizontal and vertical directions 

are indicated by the dark blue arrows. The two types of diamond plaquettes are 

shaded in yellow and green.  
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The light propagation through the nonlinear flux-dressed dice lattice in the tight-

binding approximation can be modeled by a set of 6MN coupled differential equations with 

the on-site cubic nonlinear terms: 
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 (1)  

where dot signs the derivation with respect to the propagation coordinate z, NM is the total 

number of cells and the composite complex wave function is represented by the 6 - 

component spinor in each cell (abcdef)Tm,n (m, n are the cell indices). The strength of the 

complex hopping parameter is scaled to t = 1 in the following, and γ is the nonlinear 

coefficient.  

The Hamiltonian in the reciprocal lattice space is obtained by applying the 2D Fourier 

transformations regarding the translation invariance of the 2D periodic dice lattice in both 

horizontal and vertical directions (Zhang and Jin, 2020):  
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The six eigenenergies of linear Hamiltonian form four dispersive bands and one doubly 

degenerated FB for  = 0, as shown in Fig. 2a. Changing the value of flux, a set of three 

momentum independent, fully degenerated FBs is obtained for  = π, Fig. 2b. 

Corresponding eigenvectors form the Bloch wave basis, which can be expressed in a form 
( )

, ,
x yi k m k n i z

m n m ne e  
− + −= , where β is the corresponding eigenenergy value which plays 

a role of propagation constant, and kx, ky are components of the transversal 2D wave vector 

k. 
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Fig. 2 The energy band spectrum of linear dice lattice for two values of flux: a)  = 0 and 

b)  = . 

In the fully FB case,  =  a set of CLMs, i. e. compactons, can be obtained as a result 

of the superposition of Bloch states under conditions of destructive interference. They are 

hosted by a few unit cells in the form of six snowflake-like localized structures, Fig. 3 [7]. 

 

Fig. 3 Schematic representation of the six types of CLMs of the dice lattice. The energies 

of the CLMs are ±√6 for the top panel and 0 for the middle and bottom panels. The 

C1 and C2 are centered at hub-sublattices, while C3-C6 are centered at rim-

sublattices. The nonzero values of amplitude are written in corresponding plots. 
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The fundamental compactons of C1,2 type, belonging to non-zero FBs, are hosted by 3 unit 

cells, while quartet C3-6, belonging to zero energy FB, is hosted by 6 unit cells. By 

translating the fundamental compactons, the compact but not orthogonal eigenbasis can be 

defined. The properties of the FB compactons are investigated in the dice lattice in detail 

(Zhang and Jin, 2020). Here, we clarify the dynamics of these modes in linear as well as 

nonlinear dice lattices.  
We propagate the CLMs through the dice lattice by numerically solving the model Eq. 

1. The results illustrated in the following are obtained for the dice lattice with 15x15 unit 

cells. The environmental noise is modeled as uniform random events, i. e. as white noise 

(Stojanović et al., 2021), and propagation is simulated by adopting the Runge-Kutta 

procedure of the 6th order. In order to scan the dynamical properties of the CLMs, we 

calculate the participation number Pn, which is proportional to the number of sites on which 

the mode is localized; mode overlapping ρ, which represents the normalized magnitude of 

field overlap; and total intensity distribution I. The evolution of these quantities shows the 

efficiency of the mode compactness-localization and offers a possibility of estimating 

which mechanism governs the mode dynamics.  

3. COMPACT LOCALIZED MODE DYNAMICS 

3.1. Linear case 

Regarding the linear propagation of CLMs modes under the fulfilled conditions for AB 

caging, the dynamical properties are fully determined by the non-orthogonality i.e. linear 

dependence of the CLMs spanning the same energy band. We have found two types of 

dynamically steady compact structures. The first one is formed by C1, C5, and C6, which keeps 

initial snowflake-like structures hosted by 3 (C1) and 6 cells (C5, and C6,) during the propagation, 

as shown in Fig. 3. We can notice the small amplitude oscillations (Fig. 4a) in the Pn and ρ 

values during the whole propagation with period Z0=2.5. In addition, the intensity distribution 

stays mostly frozen, hence indicating stable mode propagation.  

The second peculiar dynamical structure is a breather which is formed by the 

propagation of the C2, C3, and C4. In Fig. 4b the Pn and ρ vs. z oscillate with two 

characteristic periods, Z0 and Z1, with Z1/Z0=1/2, directly related to the AB caging which 

traps C2 dynamics to 6 and C3,4 to 12 cells. The intensity distribution dynamics fully 

correlate with the participation number and mode overlapping behavior as illustrated in 

Fig. 5 for the C3 mode initially injected in the lattice. In this figure, four different time 

snapshots of the total intensity of the resulting breather over one period are shown 

representing direct proof of the efficiency of the AB caging. 

We propose that the initial phase distribution among the excited CLM sites and related 

symmetry properties are responsible for different CLM dynamics presented above: the C1, C5, 

and C6 stay mostly fully trapped in the initially excited sites, while C2, C3, and C4 wander 

between the whole trapping region consisting of 6 and 12 cells, respectively.  
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Fig. 4 The participation number (Pn) and mode overlapping (ρ) vs. propagation length (z) 

for each of FB compactons injected in the linear dice lattice with 15x15 unit cells. 

 
Fig. 5 The total intensity distribution of the C3 initially injected in dice lattice at certain 

time instants (values of z written on plots in arbitrary units). The oscillatory 

dynamics inside the AB cage indicated in Figure 4 are illustrated. Mode dynamics 

are trapped in 12 unit cells. 
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3.2. Nonlinear case 

Except for being non-orthogonal, the FB compact modes are heterogeneous structures. 

Therefore, the on-site nonlinearity cannot extend to the nonlinear CLMs’ families with the same 

amplitude and phase distribution (Danieli et al., 2018) as was the case for homogenous 

compactons. However, the AB caging ensures they evolve in dynamical complexes which stay 

trapped inside the cage. 
To probe the CLMs’ robustness in the presence of nonlinearity, we propagate the 

snowflake-like compact modes through the lattices whose index of refraction is modified 

by nonlinearity. Mathematically, it is modeled by the on-site nonlinear terms in each of the 

system equations (Eq. 1).  

 

Fig. 6 The evolution of the mode overlapping vs. the nonlinearity strength for six types of 

compact snowflake structures in a nonlinear lattice. The high robustness of C1, C5, 

and C6 regardless of the nonlinearity strength is obvious and can be related to the 

initial CLMs phase distribution (see Section 2). 

For weak nonlinearity of both signs (self-focusing and self-defocusing), the nonlinear 

CLMs dynamics follow the patterns observed in the cases with the linear counterparts. This 

can be seen in Fig. 6 which presents the contour plots of the ρ(z) vs. γ. Subplots correspond 
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to different types of initially injected snowflake compact modes. The CLMs structures C1, 

C5, and C6, whose extreme robustness was indicated in the linear regime, propagate without 

qualitative changes in the presence of weak nonlinearity, while, by increasing the strength 

of nonlinearity, we observe the characteristic breathing patterns with two main periods in 

the later propagation stages. 

The CLM of a breather type keeps its main properties as well, showing the breathing pattern 

for weak γ with the same periodicity as in the linear case. On the other hand, the strong 

nonlinearity succeeds in breaking the characteristic snowflakes energy redistribution after a 

certain propagation length, causing the quasi-periodic breather behavior which stays caged. This 

confirms the significance of the AB caging despite the nonlinearity strength. In Fig. 7 the power 

spectrum of the quasi-periodic breather is shown and it is compared with one of the regular 

breathers. The increased breather complexity is associated with the widening of the spectrum 

lines at characteristic frequencies.  

 

Fig. 7 a) Stroboscopic plot of the total intensity at z=40. Initially, C3 is injected in the 

nonlinear lattice, γ=3. The second plot b) comparatively shows the power spectrum of 

the same mode in the presence of weak nonlinearity γ =0.01 and when γ =3. 

4. CONCLUSIONS 

The linear 2D dice lattice’s energy spectrum can be tuned by an effective magnetic flux 

to provide the conditions for AB caging, giving rise to a fully FB spectrum. It consists of 

three double degenerated bands which can be spanned over the 2D wave-vectors space by 

compact but not-orthogonal basis of CLMs in six different snowflakes’ configurations. These 

heterogeneous isolated localized structures owe their existence to destructive interference 

hosted by a few unit cells. We have been studying the dynamics of CLM in linear and nonlinear 

lattice environments by adopting direct numerical simulations based on the Runge-Kutta 

procedure. Two types of dynamical compact localized patterns have been found: highly robust 

snowflake-like steady compact modes in both linear and weak nonlinear lattice, and localized 

breather complexes robust to the presence of weak nonlinearity. The robustness of the 

dynamically compact modes is a consequence of the AB caging prevalence in the mentioned 

circumstances. The signatures of the AB caging have not been lost by increasing the 

nonlinearity strength, although the complexity of caged breathing modes was increased. The 

influence of nonlinearity can be connected with the appearance of quasi-periodic and irregular 

breathing structures. To conclude, we have shown the high efficiency of the AB caging in the 
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nonlinear 2D photonic dice lattice which offers a tool for managing and manipulating the 

compact localized mode dynamics. This can be tested on photonic platforms such as the 

arrays of ring resonators or waveguide networks in the laboratory and it can have diverse 

practical applications.  
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OBLIKOVANJE DINAMIKE AHARONOV-BOHM 

ZAROBLJENIH LOKALIZOVANIH MODA  

POSREDSTVOM NELINEARNOSTI 

Uslovi za generisanje Aharonov-Bohm (AB) efekta mogu se postići u dvodimenzionalnoj rombičnoj 

rešetki s veštački indukovanim fluksom, što dovodi do formiranja energetskog spektra s potpuno ravnim 

zonama. U radu, akcenat je stavljen na proučavanje dinamike kompaktnih lokalizovanih svojstvenih moda 

ravnih zona, koje su izolovane na svega nekoliko jediničnih ćelija rešetke u dve pahuljičaste konfiguracije. 

Numerički je pokazana mogućnost stabilnog prostiranja dva tipa kompaktnih lokalizovanih kompleksa uz 

pogodno podešavanje nelinearnih svojstava rešetke. AB zarobljavanje igra dominantnu ulogu kada je reč 

o dinamici kompleksa, bez obzira na vrstu i jačinu nelinearnosti, koja, sa svoje strane, može uticati na oblik 

zarobljene strukture. Naša otkrića pružaju nove mogućnosti za unapređivanje načina za manipulisanje 

svetlošću u fotonskim sistemima. 

Ključne reči: rešetka, Aharonov-Bom kavez, energetski spektri sa ravnim zonama, kompakton, 

nelinearnost 
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