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Abstract. We calculated the electronic structure of CsPbBr3 quantum wells using the k•p 

model with parameters extracted from hybrid functional based DFT calculations 

supplemented with self-energy corrections arising from the electron-phonon interaction. 

We obtained the temperature dependence of the band gap for different sizes of the 

quantum well. The results show that the temperature dependence in quantum wells is 

similar to the one found in bulk phase for all sizes of the well that were considered. 
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1. INTRODUCTION  

Since most electronic and optical devices consist of semiconductor materials, there is a 

great significance in knowing the properties of these materials. Over the years, general 

improvements of these devices made them smaller in size and more power efficient. 

Reducing the size from a bulk phase, that can be as small as few micrometers, down to a 

nanostructure that has a scale of a few dozen nanometers or less introduces a change in 

electronic properties of the material. This makes it possible to tune the electronic properties, 

like the band gap of a material, to desired values, allowing us to replicate the electronic 

properties of a much more expensive or less durable material with a material that is cheaper to 

produce or more durable. Working with nanostructures whose electronic properties change with 

their size introduces new challenges for investigating and modeling semiconductor materials. 

For the past few decades, density functional theory (DFT) has been routinely used for 

modeling the properties of the bulk phase of semiconductors with much success, while 

their nanostructures would prove to be challenging since the required computational 
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resources are increasing with the size of the nanostructure, and in some cases they become 

infeasible. Relying on the k•p method, alongside DFT, the computational resources 

required to obtain the electronic structure can be significantly reduced. One disadvantage 

of the k•p is that it considers only several selected bands of interest, while the rest of them 

are treated perturbatively (like in Löwdin, 1951.). The energy of these bands and their 

wave-functions have to be extracted from DFT calculation. Another disadvantage is that it 

can be a good approximation only in a relatively small vicinity around the point in the 

Brillouin zone from which DFT results are extracted. Since our main interest is the band 

gap of a nanostructure device, these disadvantages come at an acceptable cost. On the other 

hand, DFT provides information about all bands in the whole Brillouin zone which is more 

than sufficient in this case. 

Once we determine the size dependent electronic properties of the nanostructure for the 

desired device, we have to take into account various external conditions that such device 

would operate under like the surrounding temperature. Both k•p and DFT, however, by 

themselves do not take into account any temperature effects that such devices might be 

exposed to, and since in practice they are expected to perform at a wide range of outside 

temperature conditions, these effects should be taken into account as well. 

Regarding ab initio modeling of nanostructures, in our previous work (Jocić and 

Vukmirović 2020.) we provided, among other, a detailed explanation and comparison of 

DFT and k•p methods for bulk and quantum well (QW) nanostructures of CdSe. We have 

shown that the k•p method is in excellent agreement with DFT, even for rather thin QWs, 

using standard 8×8 (H8) and extended 26×26 (H26) k•p Hamiltonians which take into 

account the effects of spin-orbit coupling (SOC), which is necessary in the case of heavy 

ions such as lead. 

To determine the effects of temperature on the electronic structure, in our recent paper 

(Jocic and Vukmirovic 2023.) we proposed a method that combines hybrid PBE0 functional 

based calculation in DFT with the Allen-Heine-Cardona (AHC) theory that provides 

temperature dependent self-energy correction of electronic bands. Because this self-energy 

has its origin in electron-phonon interactions it was necessary to obtain proper phonon 

frequencies, which are also temperature dependent and were obtained using the self-

consistent phonon (SCPH) method. Self-energies are then obtained within the AHC theory 

using the on-the-mass-shell (OTMS) approximation. We also introduced a self-consistent 

procedure (SCP), which improves upon OTMS approximation, which evaluates these self-

energies using interacting Green’s functions and extracts the results from the corresponding 

spectral function. We performed this for several bands below and above the band gap at key 

points in the first Brillouin zone (1BZ). These methods allowed us to obtain good agreement 

of the band gap with the available experimental data for CsPbCl3, CsPbBr3 and CsPbI3 at zero 

temperature and the temperature at which transition to cubic phase takes place. 

In this work, we turn our attention to perovskite crystal CsPbBr3, and calculate the 

temperature dependent gap of quantum wells (QW) made from this material. It was 

observed that CsPbBr3 has two phase transitions as temperature increases. At low 

temperatures it forms an orthorhombic crystal structure that transforms to a tetragonal 

structure for a narrow range of temperatures, and then transforms to a cubic structure at a 

temperature of T = 403 K. Since CsPbBr3 has recently found application in solar cells, the 

most interesting region would be the one of high temperatures of the cubic structure at 

which these solar cells would operate. 
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In this paper, we combine the method from our previous (Jocić and Vukmirović 2020.) 

and results from our recent (Jocić and Vukmirović 2023.) work in order to obtain the 

temperature dependence of band gaps for CsPbBr3 QW nanostructures. The structure of 

the paper is as follows: In Theory section, we first provide a brief theoretical overview of 

the k•p method for QW nanostructures using a plane wave (PW) basis and discuss the 

ordering of the bands that go into H8 and H26 Hamiltonians for the cubic structure of 

CsPbBr3. In the Results section, we first demonstrate the procedure for obtaining the 

convergence of the results with respect to necessary numerical parameters used in k•p 

method for QWs. We then present band structure with a more accurate band gap that is 

obtained from k•p, using hybrid DFT and temperature corrections for bulk, and a band 

structure for QW of fixed size using the same parameters. Finally, we show the temperature 

dependence of the electronic bands and band gaps for QW sizes ranging from around 2 nm 

to around 18 nm for temperature range from 400 to 700 K. 

2. THEORY  

Constructing a k•p Hamiltonian for nanostructures requires rewriting equations for 

bulk in a new form that is suitable for that case. Since the periodicity of the crystal is 

violated, in the general case, the electron momentum k is not a good quantum number 

anymore and we have to introduce envelope functions ψm alongside Bloch unit cell 

functions um in the expression for the wave-function Ψ: 

Ψ =  ∑ 𝜓𝑚𝑢𝑚
𝑚

. (1) 

In the case of a cubic CsPbBr3 lattice, the QW is periodic in the (x, y) plane, and its size 

can be determined by counting the number of bulk unit cells along the z-direction. We 

choose the coordinate system in such a way that the QW is located in the region from l1 to 

l2 (0 < l1 < l2 < L) and the surrounding material is in the region from 0 to L. 

We expand envelopes in PW basis as𝜓𝑚(𝑧) = ∑ 𝑊𝑚𝑞  𝑎𝑞𝑞 , where 𝑎𝑞(𝑧) = 𝐿−1/2 exp (𝑖𝑘𝑞𝑧) 

are a set of basis functions, and 𝑘𝑞 = 2𝜋𝑞/𝐿 , with 𝑞 = 0, ±1, ±2, ±3, … ± 𝑁PW , where 

2𝑁PW + 1 is the number of plane waves. This makes the envelope function periodic in 

space as 𝜓𝑚(𝑧) =  𝜓𝑚(𝑧 + 𝐿). Using the condition that 𝜓𝑚(𝑟) are smooth, continuous, 

infinitely differentiable and slowly varying functions, whose plane-wave expansion is 

restricted to the 1BZ and 𝑢𝑚(𝑟) are a complete set of orthogonal Bloch functions at k0, 

periodic over the whole structure, with the periodicity of Bravais lattice (Lew Yan Voon 

and Willatzen, 2009. ), we arrive at k•p equations for QWs: 

∑ ⌈
ℏ2

2𝑚0

(𝐤 − 𝐤0)2
(𝑥,𝑦)

 𝛿𝑠𝑞 +
ℏ2

2𝑚0

𝑘𝑞
2 𝛿𝑠𝑞 + 𝐼𝑠𝑞(𝐸𝑚)⌉

𝑚,𝑞
𝛿𝑛𝑚 𝑊𝑚𝑞  

(2) + ∑ ⌈
ℏ

𝑚0

(𝐤 − 𝐤0)(𝑥,𝑦) ⋅ 𝐩𝑛𝑚 𝛿𝑠𝑞 +
ℏ

𝑚0

𝑘𝑞𝐞𝑧 ⋅ 𝐩𝑛𝑚⌉
𝑚,𝑞

 𝑊𝑚𝑞  

+ ∑ 𝐻𝑛𝑚
(2)

𝑚,𝑞
(𝑠, 𝑞) 𝑊𝑚𝑞  =   𝐸 𝑊𝑛𝑠  ,  

where 𝐩𝑛𝑚  and 𝐸𝑚  are momentum matrix elements and band energies obtained as k•p 

parameters in bulk for k0, m0 is the electron mass, and: 
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Δ𝑘𝑠𝑞 = 2𝜋(𝑠 − 𝑞) 𝐿⁄  , 

(3) 

𝐼𝑠𝑞(𝐸) = (𝐸 − 𝐸𝐵)𝐼𝑠𝑞(𝐸) |𝑙2

𝑙1    ,   𝐸𝐵 = 𝐸 ± Δ𝐸𝐵 ,    

𝐼𝑠𝑞(𝐸) |𝑙2

𝑙1  =
1

𝐿
 ∫ 𝑒−𝑖Δ𝑘𝑠𝑞𝑧 𝑑𝑧

𝑙2

𝑙1

=  
𝑙1 − 𝑙2

𝐿
  𝛿𝑠𝑞 +

𝛿𝑠𝑞 − 1 

𝑖𝐿Δ𝑘𝑠𝑞

 (𝑒−𝑖Δ𝑘𝑠𝑞𝑙1 − 𝑒−𝑖Δ𝑘𝑤𝑞𝑙2). 

The second-order perturbation band term 𝐻𝑛𝑚
(2)

(𝑠, 𝑞), which accounts for remote bands r 

that are not present in the first-order Hamiltonian are: 

𝐻𝑛𝑚
(2)(𝑠, 𝑞) =  ∑

1

𝐿
 

𝑟
∫ 𝑑𝑧  𝑒−𝑖𝑘𝑠𝑧

(ℏ𝐊 ⋅ 𝐩𝑛𝑟)(𝐩𝑟𝑛 ⋅ ℏ𝐊)

𝑚0
2[(𝐸𝑛 + 𝐸𝑚)/2 − 𝐸𝑟] 

 𝑒𝑖𝑘𝑞𝑧 

 (4) 

                   =  ∑
1

𝐿
 

𝛼,𝛽
∫ 𝑑𝑧  𝑒−𝑖𝑘𝑠𝑧  

ℏ 𝐾𝛼

𝑚0

𝑃𝑛𝑚,𝛼𝛽

ℏ𝐾𝛽

𝑚0

  𝑒𝑖𝑘𝑞𝑧 

where ℏK = (ℏk − ℏk0)(x,y) + pz ez , pz = −𝑖ℏ∂z is the momentum operator, and 𝑃𝑛𝑚,𝛼𝛽 is the 

second-order k•p momentum tensor. We used n,m for band indices in bulk and α, β indices 

for directions x, y, z . 

We assume that the surrounding material has the same parameters as the QW, except 

for the valence and conduction band energies, that are respectively shifted by −∆EB and 

+∆EB with respect to the QW parameters, where ∆EB is the absolute shift of the bands. This 

shift is chosen to be large enough to ensure that the wave functions are located in the QW 

and was set to 10 eV for all our calculations. 

Size of the well (surrounding material) is a product of the size of the unit cell in z-

direction a and some integer N (NB), l = Na (L = NBa). NPW and L/l are the parameters that 

need to be studied in more detail, and we will show how to determine them in the next 

section. 

In the limit where k is a good quantum number, eqn. (2) transforms to the case of bulk 

by removing every integration over z-components and PWs from envelope function 

expansion, reducing to: 

∑ [
ℏ2

2𝑚0

(𝐤 − 𝐤0)2 + 𝐸𝑚] 𝛿𝑛𝑚 𝑊𝑚
𝑚

 

(5)                + ∑ [
ℏ

𝑚0

(𝐤 − 𝐤0) ⋅ 𝐩𝑛𝑚 + 𝐻𝑛𝑚
(2)

]  𝑊𝑚 = 𝐸 𝑊𝑚
𝑚

 ,  

𝐻𝑛𝑚
(2)

=  ∑
ℏ (𝐤 − 𝐤0)𝛼

𝑚0

𝑃𝑛𝑚,𝛼𝛽

ℏ(𝐤 − 𝐤0)𝛽

𝑚0

  .
𝛼,𝛽

  

Eqn. (2) and eqn. (5) show us how to construct the Hamiltonian, but not which bands 

and which k-point should be used for unperturbed results from DFT. Most of the electronic 

properties are governed by the symmetry of the crystal and most of the information about 

the current carriers can be obtained by considering points with the greatest probability for 

their detection. Extremal states in the electron structure are most likely to have current 

carriers: holes in the valence band maximum (VBM), and electrons in the conduction band 

minimum (CBM). Historically, these points and their symmetry have been the center of 

interest when DFT calculations were not yet computationally feasible, so the electronic 
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structure was mostly studied by analytical methods in combination with available 

experimental data. A good overview of these analytical methods can be found in a book by 

Bir and Pikus, 1974. 

The point group of the bulk cubic CsPbBr3 crystal is Oh, and the band gap is located at 

the R-point in the 1BZ. Point group Oh transforms to a double group, that describes bands 

when SOC in included, by multiplying all irreducible representations by a spinor 

representation Γ+
6. Fig. 1 illustrates this for bands around the gap in the bulk CsPbBr3. 

When SOC is not included, VBM at R-point is non-degenerate band corresponding to Γ−
2 

irreducible representation that transforms to 2-fold degenerate band Γ−
7 when SOC is 

included. CBM is 3-fold degenerate band at R-point, corresponding to Γ+
5 when SOC is 

omitted, and transforms by splitting into a 2-fold Γ+
7 with lower energy, now CBM, and 4-

fold Γ+
8 band with higher energy, now CBM1. These 8 bands in total make the H8 

Hamiltonian. 

The larger H26 Hamiltonian is formed when along these 8, we include 3 more valence 

bands, counting with decreasing energies from VBM: 4-fold Γ−
8, 2-fold Γ−

7, and 4-fold Γ−
8, 

respectively, and 3 more conduction bands, counting with increasing energies from CBM1: 

2-fold Γ+
6, 2-fold Γ+

7, and 4-fold Γ+
8, respectively. 

Both H8 and H26 have a unique set of k•p parameters that consist of energies Em, 

momentum matrix elements 𝐩𝑛𝑚 and second-order momentum tensors 𝑃𝑛𝑚,𝛼𝛽. Using the 

same parameters for bulk, we construct the H26 Hamiltonian for QW from eqn. (2), taking 

note that the periodicity is now valid only in the (x, y) plane. 

 

Fig. 1 Ordering of the bands around the gap and their transformation when SOC is 

included. Distance between the bands does not scale with energy distance 

between them. Notation for the irreducible representations that was used here 

follows the one found in Bradley and Cracknell, 2010. 
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3. RESULTS AND DISCUSSIONS  

Depending on the size of the k•p Hamiltonian, a small change of numerical parameters 

L/l and NPW can have a significant effect on the result. This is especially true for smaller 

wells, while large wells that approach bulk in terms of size are less sensitive to those 

changes. For this reason, we inspect the convergence with respect to those parameters as 

follows. First, we fix some l, and gradually increase the size of the surrounding material L 

and number of plane waves NPW until we achieve convergence. This process is repeated for 

every l. 

 
Fig. 2 Energy of VBM as a function of NPW, in QWs. The results were obtained using H26 

(solid lines) and H8 (dotted lines) Hamiltonians, respectively, for QWs of the size 

l=2a, l=4a, l=6a, l=12a, l=26a, l=30a in units of the lattice constant a. The size of 

the surrounding material is L =3l (diamonds), L=5l (squares), and L=10l (circles). 

 
Fig. 3 Energy of CBM as a function of NPW, in QWs. The results were obtained using H26 

(solid lines) and H8 (dotted lines) Hamiltonians, respectively, for QWs of the size 

l=2a, l=4a, l=6a, l=12a, l=26a, l=30a in units of the lattice constant a. The size of 

the surrounding material is L =3l (diamonds), L=5l (squares), and L=10l (circles). 
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We will focus on H8 and H26 k•p Hamiltonians, both of which we first construct for 

bulk from DFT results using PBEsol functional as described in Jocić and Vukmirović 2020. 

and eqn.(2). For DFT calculation we used a 4×4×4 k-grid for electron states, electron 

kinetic energy cutoff of 50 Ry, and a total of 240 bands for cubic phase of CsPbBr3 with a 

lattice constant of a = 11.1 a0 (where a0 is the first Bohr radius). DFT calculations were 

performed with included SOC. Since we are most interested in the position of VBM and 

CBM, and therefore the band gap, we will focus our convergence tests on these bands. 

In Fig. 2 (Fig. 3) we present the energy of the VBM (CBM), as a function of NPW, 

respectively. The resulting band gap is presented in Fig. 4. All three figures show results 

for small (l = 2a and l = 4a), intermediate (l = 6a and l = 12a) and large (l = 26a and l = 30a) 

QWs, respectively. 

Although the k•p method for QWs itself does not require much computational resources 

and it can be done, on a single-core desktop computer, it is important to estimate, for every l, 

at which point increasing L/l and NPW does not change the results of the band gap by more 

than 10 meV. For H8 one usually needs a smaller ratio of L/l, and for L/l = 3, the NPW of 10, 

20, 30, 40 and 40, for l = 2a, l = 4a, l = 12a, l = 26a, and l = 30a, respectively, was sufficient. 

For H26 one usually needs a larger L/l ratio for smaller wells, while larger wells that approach 

bulk can have acceptable results for a smaller size of the surrounding material. For l = 2a and 

l = 4a, it was sufficient to use NPW = 16 and NPW = 30, respectively with L/l = 10. For l = 6a 

and l = 12a, it was sufficient to use NPW = 20 and NPW = 40, respectively with L/l = 5. For l 

= 26a and l = 30a, it was sufficient to use NPW = 30 and L/l = 3. 

For small QWs, the results for band gaps obtained from H8 and H26 can differ as much 

as 150 meV (see Fig. 4), with H8 overestimating the band gap with respect to H26. For 

intermediate and large QWs, difference in band gaps between H8 and H26 is still present, 

although it is much smaller and does not exceed 15 meV and 2 meV, respectively. 

 
Fig. 4 Energy of the band gap as a function of NPW, in QWs. The results were obtained 

using H26 (solid lines) and H8 (dotted lines) Hamiltonians, respectively, for 

QWs of the size l=2a, l=4a, l=6a, l=12a, l=26a, l=30a in units of the lattice 

constant a. The size of the surrounding material is L =3l (diamonds), L=5l 

(squares), and L=10l (circles). 
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Fig. 5 The band structure of bulk CsPbBr3 obtained using H26 Hamiltonians, 

replacing 𝐸𝑚 with 𝐸𝑚
𝑃𝐵𝐸0 (solid line with diamonds) and with 𝐸𝑚

𝑃𝐵𝐸0 + Σm(𝑇) 

correction from SCP calculations at T = 400 K (dash-dot line with circles) and 

T = 700 K (dotted line with crosses), respectively. 

 
Fig. 6 The band structure of CsPbBr3 QW of size l = 6a obtained using H26 

Hamiltonians replacing 𝐸𝑚  with 𝐸𝑚
𝑃𝐵𝐸0 (solid line with diamonds) and with 

𝐸𝑚
𝑃𝐵𝐸0 + Σm(𝑇) correction from SCP calculations at T = 400 K (dash-dotted 

line with circles) and T = 700 K (dotted line with crosses), respectively. 

 

In eqn. (2), we restrict envelope functions to the expansion on plane-waves only in the 

1BZ. Therefore, in the general case, one would expect some kind of divergence for both 

H8 and H26, when NPW > L/a or equivalently when NPW > NB. However, due to having 

much less parameters than H26, H8 seems to be stable even when NPW > NB unlike H26 
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which shows divergence in this case, as seen in Fig. 2, Fig. 3 and Fig. 4. We also note that 

H8 always converges before NPW exceeds the limits of the 1BZ. However, for large wells, 

both H8 and H26 require less plane-waves than are needed to fill the whole 1BZ, in order 

to calculate the band gap. For these reasons, we can also check the convergence, by fixing 

the NPW = NB to always include all plane-waves in the 1BZ, while only increasing the size 

ratio of the surrounding material and the QW L/l, and then checking if the resulting band 

gap changes with reduction of NPW. 

Since DFT has a well-documented problem that it typically underestimates the band 

gaps (Perdew, 1985.), we can improve our k•p results by replacing DFT bulk PBEsol 

energies with the ones obtained using PBE0 (Perdew, 1996.) to obtain a more accurate gap. 

To include the temperature correction, we add the electron self-energy correction Σ𝑚(𝑇) 

that comes from the electron-phonon interaction. When calculating PBE0 energies 𝐸𝑚
𝑃𝐵𝐸0, 

we used the same numerical parameters as previously mentioned for PBEsol, with the 

addition of 4×4×4 q-grid for sampling the required Fock operator and we used the Gygi-

Baldereschi method to treat the singularity at q → 0. Results for Σ𝑚(𝑇) were used from 

our recent paper (Jocić and Vukmirović 2023.), where we used the maxima of the spectral 

function from SCP method to obtain band energy corrections. The results are available for 

temperatures from T = 400 K to T = 700 K. 

In eqn. (5), we replace all 𝐸𝑚 with 𝐸𝑚
𝑃𝐵𝐸0, for H26 without temperature correction, and 

with 𝐸𝑚
𝑃𝐵𝐸0 + Σm(𝑇) for T = 400 K and T = 700 K, respectively, to include temperature 

effects in bulk. The resulting band dispersion plot is presented in Fig. 5. As expected from 

our recent work the biggest shift in energies is observed for VBM and CBM (when 

comparing against other bands that form H26), which effectively gives the band gap of 

2.08 eV and 2.23 eV at T = 400K and T = 700K, respectively, and 1.5 eV without the 

Σ𝑚(𝑇). Inserting the same parameters in eqn. (2), we obtained the band gaps of 1.67 eV, 

2.21 eV and 2.35 eV, respectively for QW of size l = 6a with its band dispersion shown in 

Fig. 6. 

 
Fig. 7 Energies of VBM, CBM and band gaps for CsPbBr3 QW as a function of the 

size of the QW l, obtained using H26 Hamiltonian (solid lines) and H8 (dotted 

lines) when 𝐸𝑚 is replaced by 𝐸𝑚
𝑃𝐵𝐸0 + Σm(𝑇), at temperatures of T = 400 K 

(diamonds), T = 500 K (squares), T = 600 K (circles), T = 700 K (crosses). 
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Fig. 8 Energies of VBM, CBM and band gaps for CsPbBr3 QW as a function of 

temperature T , obtained using H26 Hamiltonian (solid lines) and H8 (dotted 

lines) when 𝐸𝑚 is replaced by 𝐸𝑚
𝑃𝐵𝐸0 + Σm(𝑇), respectively for several sizes of 

QWs l = 4a (diamonds), l = 6a (squares), l = 12a (circles), l = 26a (crosses) in 

units of lattice constant a. 

 

Finally, we present the temperature dependence of QW band gaps using H26 and H8 

Hamiltonians. We calculated how energies of VBM, CBM, and the band gap change with 

the size of the QW and temperature, respectively. The E = 0 level is the one VBM takes 

for the bulk phase with 𝐸𝑚
𝑃𝐵𝐸0 energy set. Consistent with the previous figures, H26 and 

H8 give almost identical results for intermediate and large QWs, while they show a slight 

discrepancy for small QWs. 

Fig. 7 shows energies of VBM, CBM, and band gaps, respectively, as a function of QW 

size l, starting from l = 2a and going to l = 30a for several temperatures that range from 

400 to 700 K. From this figure we can conclude that the energies of the bands and therefore 

the gap change significantly with the increase of the QW size until certain point (around 8 

nm), after which the results very slowly approach the same ones found in the bulk phase. 

Fig. 8 shows energies of VBM, CBM, and band gaps, respectively, for temperatures 

from T = 400 K to T = 700 K for several QW sizes of l = 4a, l = 6a, l = 12a, and l = 26a. 

From this figure we can see that the relative change of energies with temperature is similar 

for all sizes of QWs and again similar for bulk when compared to results from Jocić and 

Vukmirović 2023. 

4. CONCLUSION  

In this work, we demonstrated a procedure for obtaining convergence with respect to 

numerical parameters used for H8 and H26 k•p Hamiltonians for QWs like the size ratio 

of the surrounding material and the QW of width L/l and the number of plane waves in the 

envelope function expansion NPW, relying on the procedure used in Jocić and Vukmirović 

2020. We demonstrated that even when H8 shows no divergence for NPW > NB, the results 

do not change from the ones that take all plane-waves in the 1BZ. The H26 produces 
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diverging results whenever NPW > NB, but for large QWs a good result can be obtained 

when NPW < NB. We obtained a band dispersion with improved value for the band gap for 

bulk and QW, using H26 and replacing PBEsol energies 𝐸𝑚 with PBE0 energies 𝐸𝑚
𝑃𝐵𝐸0 

and then introducing the temperature effects from electron self-energy corrections Σ𝑚(𝑇), 

obtained from spectral function maxima, as in Jocić and Vukmirović 2023. Finally, we 

obtained results for the temperature dependence of band gaps for QWs using the k•p 

method. Band gap results were obtained for wells in the range from l = 2a to l = 30a, and 

for the temperatures from 400 K to 700 K. This way, we showed how the band gap of the 

QWs changes with size and temperature in the case of perovskite CsPbBr3 in cubic form. 
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TEMPERATURSKA ZAVISNOST ELEKTRONSKOG 

ENERGETSKOG PROCEPA KVANTNIH JAMA CsPbBr3 

DOBIJENIH POMOĆU k•p METODA  

Izračunali smo elektronsku strukturu CsPbBr3 kvantne jame pomoću k•p modela korišćenjem 

parametara iz DFT proračuna na bazi hibridnih funkcionala sa dodatkom korekcija za self-energije 

koje potiču od elektron-fonon interakcije. Dobili smo temperatursku zavisnost procepa za različite 

veličine kvantne jame. Rezultati pokazuju da je temperaturska zavisnost u kvantnim jamama, za sve 

veličine jama koje su uzete u obzir, slična onoj koja se dobija za balk fazu. 

Ključne reči: nanostrukture, temperaturska zavisnost, kvantne jame, k•p metod. 

 


