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1. INTRODUCTION 

Cosmological inflation proposes a very short period of extremely rapid expansion of 

the early Universe (Guth, 1981). During this period the Universe expanded almost 

exponentially, meaning that the scale factor of the Universe increased by an enormous 

factor (about 𝑒60 ≈ 1026) in a very short amount of time. This rapid expansion would have 

smoothed out all irregularities in the early Universe providing a very good explanation why 

the Universe appears so homogeneous and isotropic on large scales. During inflation 

fluctuations in the density of matter and energy are generated, which later gave rise to the 

large-scale structure observed in the Universe today. Besides, inflation explains creation of 

the specific patterns in the cosmic microwave background radiation.  

The physical mechanisms that govern inflation are still subject to speculation. One of 

the promising candidates, the scalar field responsible for the inflation, is a tachyon field, 

originating in the string theory. The use of the tachyon field in inflationary models and 

cosmology was inspired by Sen (Sen, 1999), where it was suggested that the tachyon field 

might be responsible for the mechanism that drives inflation. Dynamics of the tachyon field 

𝜃 is described by a non-standard Dirac–Born–Infeld (DBI) type Lagrangian (Sen, 2002) 

 ℒ = −ℓ−4𝑉(𝜃/ℓ)√1 − 𝑔𝜇𝜈𝜃,𝜇𝜃,𝜈,  (1) 

where the constant ℓ has the dimension of length. The potential 𝑉 is arbitrary function that 

satisfy the properties 𝑉(0) = const, 𝑉,𝜃(𝜃 > 0) < 0and 𝑉(|𝜃| → ∞) → 0, where the 

subscript , 𝜃 denotes a derivative with respect to 𝜃. Various potentials, derived in the string 

theory literature, have been investigated in inflationary models (Steer and Vernizzi, 2004). 

The exponential attenuation potential is one of the most studied potentials in a cosmological 

context. 

Apart from the standard tachyon inflation, the model with the tachyon field has been 

considered in the framework of modified holographic cosmology. The model is based on 

the effective four-dimensional Einstein equations on the holographic boundary obtained 

using the anti-de Sitter/conformal field (AdS/CFT) conjecture (Bilić, 2016). A model of 

tachyon inflation has been considered in the framework of holographic cosmology for some 

specific choices of potential. It has been shown that for an exponential potential (Bilić at 

el., 2019) and for an inverse hyperbolic cosine potential (Milošević at el., 2020) a good 

agreement of model’s predictions with observations can be achieved for larger values of 

the number of e-folds (𝑁 > 60). In this paper, our goal is to extend the previous 

consideration to the new type of the tachyon potential 

 𝑉 = 𝑉0 (1 − tanh2(
𝜔𝜃

ℓ
)),  (2) 

where 𝑉0 and 𝜔 are free dimensionless parameters. The potential (2), named a generalized 

T-mode potential, has been investigated in the scenario of inflation with the tachyon field 

in the frame of 𝑓(𝑅, 𝑇) cosmology (Mohammadi and Kheirandish, 2023).  
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The paper is organized as follows. In Section 2, dynamics of the model is studied in 

detail. In the following section we analyze the tachyon inflation with the potential (2), using 

the slow-roll approximation, in the holographic braneworld (Bilić at el., 2019). In Section 

4 we present the results of the observational parameters of inflation. Conclusion is given in 

Section 5. 

2. TACHYON DYNAMICS IN THE HOLOGRAPHIC BRANEWORLD 

In this section we briefly review some necessary results given in (Bilić at el., 2019). 

The scenario with a brane located at the holographic boundary of the higher dimensional 

space is referred to as the holographic braneworld. We consider a 4-dim brane with an 

effective tachyon field in the 5-dim asymptotically anti-de Sitter space-time (AdS5), with 

the curvature radius ℓ. For a spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) 

geometry on the holographic brane 

 𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 = 𝑑𝑡2 − 𝑎2(𝑡)(𝑑𝑟2 + 𝑟2𝑑Ω2),  (3) 

where 𝑎(𝑡) is the scale factor, the holographic Friedmann equation, obtained from the 

effective four-dimensional Einstein equations on the holographic boundary, is of the form 

(Bilić, 2018) 

 𝐻2 −
ℓ2

4
𝐻4 =

8𝜋𝐺N

3
𝜌 +

4𝜇

𝑎4 .  (4) 

The Hubble expansion rate is defined by 𝐻 = �̇�/𝑎 and the overdot denotes a derivative 

with respect to time 𝑡 measured in units of ℓ. The parameter 𝜇, which appears in the term 

referred to as "dark radiation," is related to a black hole in the bulk. As noted in (Bratt at 

el., 2002), this term is irrelevant for inflation, and we can set 𝜇 = 0. Combining (4) and the 

energy conservation equation 

 �̇� + 3𝐻(𝜌 + 𝑝) = 0,  (5) 

leads to the second holographic Friedmann equation 

 �̇� (1 −
ℓ2

2
𝐻2) = −4𝜋𝐺N(𝜌 + 𝑝).  (6) 

The pressure 𝑝 and the energy density 𝜌 of the inflation fluid are described by 

 𝑝 = −ℓ−4𝑉√1 − �̇�2,  (7) 

 𝜌 =
ℓ−4𝑉

√1−�̇�2
.  (8) 

Following (Bilić, 2018) we introduce a dimensionless expansion rate ℎ 

 ℎ ≡ ℓ𝐻.  (9) 
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Now, the holographic Friedmann equations (4) and (6) take the form 

 ℎ2 −
1

4
ℎ4 =

𝜅2

3
ℓ4𝜌,  (10) 

 ℎ̇ (1 −
1

2
ℎ2) = −

𝜅2

2
ℓ3(𝑝 + 𝜌),  (11) 

where 𝜅 is the fundamental dimensionless coupling defined as 

 𝜅2 =
8𝜋𝐺N

ℓ2 .  (12) 

In the limit ℎ ≪ 1, equations (10) and (11) reduce to the standard Friedmann equations. In 

that case, the solution to equation (10) has the form 

 ℎ2 = 2 (1 − √1 −
𝜅2

3
ℓ4𝜌) ,       ℎ ≪ 1.  (13) 

It follows that the dimensionless expansion rate is a monotonously decreasing function of 

time with physically acceptable values in the interval 0 < ℎ < ℎ𝑚𝑎𝑥 , where ℎ𝑚𝑎𝑥 = √2. 

Note that near and at the end of inflation ℎ ≪ 1. 

The dynamics of inflation can be described using the Hamilton’s equations 

 𝜃,𝜇 =
𝜕ℋ

𝜕𝜋
𝜃
𝜇,  (14) 

 �̇�𝜃 + 3
ℎ

ℓ
𝜋𝜃 = −

𝜕ℋ

𝜕𝜃
,  (15) 

where 𝜋𝜃
𝜇

= 𝜕ℒ/𝜕𝜃,𝜇 is the conjugate momentum and 𝜋𝜃 = √𝑔𝜇𝜈𝜋𝜃
𝜇

𝜋𝜃
𝜈 is its magnitude. 

The Hamiltonian density may be derived from ℋ = �̇�𝜋𝜃 − ℒ. Using (1), one finds 

 �̇� =
𝜂

√1+𝜂2
,  (16) 

 �̇� = −
3ℎ𝜂

ℓ
−

𝑉,𝜃

𝑉
(√1 + 𝜂2 +

𝜂2

√1+𝜂2
),  (17) 

and  

 𝜂 = ℓ4𝑉−1𝜋𝜃 .  (18) 

In the following, we will study the model with the potential given by (2). It is convenient 

and allowed by (10) and (11), to rescale the constant 𝜅 in such a way to include the free 

parameter 𝑉0, i.e. 𝜅2𝑉0 → 𝜅2 (Milošević at el., 2020). As a consequence, the potential of 

the model can be written in a form with only one free parameter 

 𝑉 = 1 − tanh2(
𝜔𝜃

ℓ
).  (19) 



 Tachyon Inflation with a Generalized T-mode Potential in the Framework of the Holographics... 17 

 

Unfortunately, the properties of the potential (19) do not allow us to eliminate dependence 

on the fundamental parameter 𝜅 from dynamical equations, as was the case with the 

exponential potential (Bilić at el., 2019). In the following, we treat 𝜅, besides 𝜔 and an 

initial ℎ𝑖 ≤ ℎ𝑚𝑎𝑥 , as an additional free parameter of the model. 

3. THE SLOW-ROLL INFLATION 

As in the standard scalar field inflation, the slow-roll tachyon inflation is based upon 

the slow evolution of the field 

 �̇�2 ≪ 1,       |�̈�| ≪ 3
ℎ

ℓ
�̇�,  (20) 

resulting in a major simplification of the dynamical equation, which in some cases can 

provide the analytical solution (Sami, 2002). For example, in the slow-roll regime the 

equation (13) takes the form 

 ℎ2 ≃ 2(1 − √1 − 𝜅2𝑉/3).  (21) 

The elegant description of the inflationary dynamic may be achieved using the slow-

roll parameters, which can be defined hierarchically 

 𝜀∗ ≡
ℎ∗

ℎ
,       𝜀𝑗+1 =

ℓ�̇�𝑗

ℎ𝜀𝑗
,       𝑗 ≥ 0,  (22) 

where ℎ∗ is the expansion rate at an arbitrarily chosen time. The slow-roll parameters are 

assumed to be much smaller than unity throughout the slow-roll regime. Inflation ends 

when the parameter 𝜀1 exceeds unity. From the definition (22), by using the equations (10) 

and (11), in the slow-roll approximations one obtains (Bilić at el., 2019) 

 𝜀1 ≃
4−ℎ2

12ℎ2(2−ℎ2)
(

ℓ𝑉,𝜃

𝑉
)

2

,  (23) 

 𝜀2 ≃ 2𝜀1 (1 −
2ℎ2

(2−ℎ2)(4−ℎ2)
) +

2ℓ2

3ℎ2 [(
𝑉,𝜃

𝑉
)

2

−
𝑉,𝜃𝜃

𝑉
].  (24) 

The terms on the right-hand side of (23) and (24) are the functions of the potential. In 

particular, for the potential (19) we find 

 𝑉,𝜃 = −
2𝜔

ℓ
(1 − tanh2 𝜔𝜃

ℓ
) tanh

𝜔𝜃

ℓ
,  (25) 

 (
𝑉,𝜃

𝑉
)

2

=
4𝜔2

ℓ2 tanh2 𝜔𝜃

ℓ
,  (26) 

 (
𝑉,𝜃

𝑉
)

2

−
𝑉,𝜃𝜃

𝑉
=

2𝜔2

ℓ2 (1 − tanh2 𝜔𝜃

ℓ
).  (27) 
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Using equations (25)-(27), the expressions (23) and (24) take the form 

 𝜀1 ≃
𝜔2(4−ℎ2)

3ℎ2(2−ℎ2)
tanh2 𝜔𝜃

ℓ
,  (28) 

 𝜀2 ≃ 2𝜀1 (1 −
2ℎ2

(2−ℎ2)(4−ℎ2)
) +

4𝜔2

3ℎ2 (1 − tanh2 𝜔𝜃

ℓ
).  (29) 

The form of the potential (19) allows us to express 𝜀1 and 𝜀2in terms of them. During 

the slow-roll regime, using (8) and (10), the potential can be approximated by 

 𝑉 ≃
3

𝜅2 ℎ2 (1 −
ℎ2

4
).  (30) 

Using (19) and (30), we can write the first two slow-roll parameters 

 𝜀1 ≃
𝜔2(4−ℎ2)

3ℎ2(2−ℎ2)
(1 −

3

𝜅2 ℎ2(4 − ℎ2)),  (31) 

 𝜀2 ≃ 2𝜀1 (1 −
2ℎ2

(2−ℎ2)(4−ℎ2)
) +

𝜔2

𝜅2
(4 − ℎ2).  (32) 

An important quantity that characterizes inflation is the number of e-folds 𝑁 defined as 

 𝑁 = ∫ 𝐻
𝑡f

𝑡CMB
𝑑𝑡 ≃ −3 ∫

ℎ2𝑉

ℓ2𝑉,𝜃

𝜃f

𝜃i
𝑑𝜃,  (33) 

where 𝑡𝐶𝑀𝐵 and 𝑡𝑓 denote the cosmic time at the beginning and at the end of inflation, 

respectively. For a successful solution of some problems in the early Universe, like the 

horizon problem and the flatness problem, the number of e-folds should be around 𝑁 ≃ 60. 

Using the criteria for the end of inflation (𝜀1𝑓 = 1), the value of the expansion rate at 

the end of inflation ℎ𝑓 can be found (ℎ𝑓 ≪ 1). From (31) one finds 

 𝜔2 ≃
3ℎf

2

2
,  (34) 

which implies that the parameter 𝜔 is small compared to one. 

The conditions (20) are equivalent to 

 𝜂 ≪ 1,       |�̇�| ≪
3ℎ

ℓ
𝜂,  (35) 

and from (17) one finds an approximate expression 

 �̇� ≃ −
ℓ𝑉,𝜃

3ℎ𝑉
,  (36) 

that can be easily integrated, yielding cosmic time 𝑡 as a function of ℎ  

  𝑡 =
𝜅2ℓ

2𝜔2 (ln
(2+ℎ)(2−ℎi)

(2−ℎ)(2+ℎi)
+ √2ln

(√2−ℎ)(√2+ℎi)

(√2+ℎ)(√2−ℎi)
).  (37) 
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4. SCALAR SPECTRAL INDEX AND TENSOR TO SCALAR RATIO 

The essential observational parameters of inflation are the scalar spectral index (𝑛𝑠) and 

the tensor-to-scalar ratio (𝑟). The calculations for the observational parameters for a general 

k-essence inflation in the holographic braneworld were carried out in (Bertini at el., 2020). 

It is shown that at linear order in the slow-roll parameters 𝜀𝑖, the expressions for 𝑛𝑠 and 𝑟 

agree with the expressions obtained in the standard scalar field inflation with the tachyon 

field (Steer and Vernizzi, 2004) 

 𝑛s ≃ 1 − 2𝜀1 − 𝜀2,  (38) 

 𝑟 ≃ 16𝜀1.  (39) 

Based on analytical calculation, a rough estimate of the observational parameter can be 

obtained in the following way. Using new variable 𝑥, defined as 

 𝑥 ≡ 1 − ℎ2/2 = √1 − 𝜅2𝑉/3,  (40) 

the definition for the numbers of e-fold (33) takes the form 

 𝑁 =
3

𝜔2 ∫
𝑥𝑑𝑥

(1+𝑥)(1−
3

𝜅2(1−𝑥2))

𝑥f

𝑥i
.  (41) 

Let's assume that 𝜅2 = 3. In this case the numbers of e-folds can be easily calculated 

 𝑁 =
3

𝜔2 ∫
𝑑𝑥

𝑥(1+𝑥)

𝑥f

𝑥i
𝑑𝑥 =

3

𝜔2 ln
𝑥

1+𝑥
|𝑥i

𝑥f =
3

𝜔2 ln
𝑥f

1+𝑥f

1+𝑥i

𝑥i
,  (42) 

where 

 𝑥i = 1 −
ℎi

2

2
,  (43) 

 𝑥f = 1 −
ℎf

2

2
≃ 1 −

𝜔2

3
.  (44) 

According to (44), the choice of the parameter 𝜔 is restricted by 𝜔 < √3. For 𝜅2 = 3, 𝜔 =
0.011, and for several initial values of ℎ𝑖 in the range 0.009 < ℎ𝑖

2 < 0.013, using (42), we 

obtain the number of e-fold in the range 55 < 𝑁 < 80. For this choice of the parameters, 

using (38) and (39), the following set of observational parameters is obtained:  

 𝑛𝑠 = 0.965 and 𝑟 = 0.139 (for 𝑁 ≃ 55) (45) 

and 

 𝑛𝑠 = 0.976 and 𝑟 = 0.095 (for 𝑁 ≃ 80). (46) 

The acceptable agreement of the model predictions for 𝑛𝑠 and 𝑟, obtained for 𝜅2 = 3, 

with constraints from Planck Collaboration 2018 (Akrami at el., 2020) 

 𝑛s = 0.9649 ± 0.0042,  (47) 
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 𝑟 = 0.056,  (48) 

is a motivation to calculate the values of the observational parameters for different values 

of the parameter 𝜅 in the given range. In the following calculations, we apply the same 

procedure as in (Milošević at el., 2019) and (Milošević at el., 2020). 

The system of the Hamilton’s equations, (16) and (17), can be integrated numerically 

following the procedure described in detail in (Bilić at el., 2019) and (Dimitrijević at el., 

2018). For arbitrary chosen values of initial conditions and free parameters there is no 

guarantee that obtained solution will be inflationary. The slow-roll conditions lead to the 

attractor behavior of the model. Because of that, the attractor behaviour can be used to 

determine the initial conditions for the model's free parameters. Using the condition (35), 

equation (17) turns out to be 

 𝜂i ≃ −
(ℓ𝑉,𝜃/𝑉)i

√9ℎi
2−4(ℓ𝑉,𝜃/𝑉)i

2+3√9ℎi
4−4ℎi

2(ℓ𝑉,𝜃/𝑉)i
2

.  (49) 

Substituting the potential (19) into (49) one finds 

 tanh2(
𝜔𝜃i

ℓ
) =

9ℎi
2

16𝜔

1+
1

2𝜂i
2

(1+
1

4𝜂i
2)2

.  (50) 

Equation (10) now can be rewritten as 

 (1 −
ℎi

2

2
)

2

= 1 −
𝜅2

3
𝑉(𝜃i)√1 + 𝜂i

2.  (51) 

Inserting (19) and (50) in (51) we obtain 

 (1 −
9ℎi

2

16𝜔2

1+
1

2𝜂i
2

(1+
1

4𝜂i
2)2

) √1 + 𝜂i
2 =

3

𝜅2 ℎi
2 (1 −

ℎi
2

4
).  (52) 

In the slow-roll regime the factor √1 + 𝜂𝑖
2 can be omitted yielding 

 1 −
9ℎi

2

16𝜔2

1+
1

2𝜂i
2

(1+
1

4𝜂i
2)2

≃
3

𝜅2 ℎi
2 (1 −

ℎi
2

4
).  (53) 

The exact solution to (53) is of the form 

 𝜂i =
1

2
√ √𝐴

√𝐴+𝐵−1
− 1,  (54) 

where 

 𝐴 ≡
9ℎi

2

16𝜔2 ,       𝐵 ≡
3

𝜅2 ℎi
2 (1 −

ℎi
2

4
)  (55) 

are functions of the free parameters of the model (𝜅,𝜔,ℎ𝑖). Using equation (50), the initial 

value 𝜃𝑖 in terms of 𝜂𝑖 is given by 
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 𝜃i =
ℓ

𝜔
arctanh√𝐴

1+
1

2𝜂i
2

(1+
1

4𝜂i
2)2

.  (56) 

The form of equation (53) restricts the value of the parametear 𝜅 

 𝜅2 > 3ℎi
2 (1 −

ℎi
2

4
).  (57) 

 

Fig. 1  Observational parameters for 𝑉 = 1 − 𝑡𝑎𝑛ℎ2(
𝜔𝜃

ℓ
) with observational constraints 

 from Planck mission (Akrami at el., 2020). The dots are obtained numerically 

 for a randomly chosen number of e-folds 60 < 𝑁 < 90 and the free parameters 

 of the model are: 0 < 𝜔 < 0.3, 0 < ℎ𝑖 < √2 and 0 < 𝜅2 < 5 restricted by (57). 

The system of the Hamilton’s equation is integrated numerically, using the initial 

conditions (54) and (56), starting from 𝑡 = 0 up to some 𝑡 large enough to provide the end 

of inflation in 𝑡𝑓 (𝜀1𝑓(𝑡𝑓) = 1, 𝑡𝑓 < 𝑡). The differential equation for 𝑁(𝑡) is solved 

simultaneously, using 𝑑𝑁/𝑑𝜃 = ℎ/(ℓ�̇�), from 𝑁(0) = 0. The time at the beginning of 

inflation 𝑡𝐶𝑀𝐵 is determined from 𝑁(𝑡𝐶𝑀𝐵) − 𝑁(𝑡𝑓) = 𝑁, where 𝑁 is the chosen number 

of e-folds. Then, 𝑡𝐶𝑀𝐵 is used to find 𝜀𝑖𝑖 = 𝜀𝑖(𝑡𝐶𝑀𝐵) and observational parameters 𝑛𝑠(𝜀𝑖𝑖) 

and 𝑟(𝜀𝑖𝑖). The dots on the Fig. 1 represent the numerical data for randomly chosen 𝑁 

ranging between 60 and 90, 𝜔 between 0 and 0.3 and ℎ𝑖
2 between 0 and 2. The parameter 

𝜅 is randomly chosen in the interval 0 < 𝜅2 < 5, restricted by (57). A comparison of the 

computed results with Planck data shows that the model predictions are in good agreement 

with the observational constraints. 
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5. CONCLUSIONS 

We have studied the tachyon inflation in the holographic braneworld with the potential 

given by (19). Using the slow-roll approximation, we obtained the slow-roll parameters. 

We numerically solved the exact dynamical equations using the initial conditions obtained 

in the slow-roll approximation. We have shown that the model predictions of observational 

parameters 𝑛𝑠 and 𝑟, obtained numerically, are consistent with the observational data for 

some values of the free parameters. We obtained a better agreement with Planck data for 

the desired e-fold number 𝑁 ≃ 60, than the agreement obtained for the model with 

exponential and inverse cosine hyperbolic potential (Bilić at el., 2019; Milošević at el., 

2020). It is interesting to compare the predictions of this model with the predictions of 

another braneworld model (e.g., Randall–Sundrum model (Randall and Sundrum, 1999)) 

with the tachyon field with the same potential, as well as the reheating problem (Bilić at 

el., 2017). The issue will be investigated in our future research. 
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TAHIONSKA INFALCIJA SA GENERALIZOVANIM T-MOD 

POTENCIJALOM U OKVIRU HOLOGRAFSKE KOSMOLOGIJE 

SVETA NA BRANI  

Razmatramo inflaciju u holografskom pristupu sa tahionskim poljem na brani, na holografskoj 

granici asimptotskog AdS5 prostora. Numerički izračunavamo opservacione parametre inflacije, 

skalarni spektralni indeks (ns) i odnos tenzora i skalara (r), za generalizovani T-mod potencijal i 

upoređujemo numeričke rezultate sa opservacionim podacima. Određujemo interval vrednosti 

slobodnih parametara za koje su predviđanja modela u skladu sa opservacionim ograničenjima.  

Ključne reči: Lagranžijani DBI tipa, tahionska kosmologija, holografska kosmologija 

 


