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Abstract. Electron capture in collisions of fast alpha particles with atomic hydrogen is 

studied by means of the prior version of the three-body boundary-corrected intermediate-

states method (BCIS-3B). State-selective and state-summed differential cross sections are 

presented for the final state 𝑛 up to 𝑛max = {2,3,4} , depending on the incident energy. 

The contributions from higher excited states with 𝑛 > 𝑛max are included using the 

Oppenheimer 𝑛−3 scaling law. The observed angular dependencies of the obtained 

differential cross sections are analyzed in detail, for incident projectile energy values of 

𝐸 = {100,  150,  300} 
keV

amu
  (intermediate) and 𝐸 = {1.3,  2.5,  5.0,  7.5,  12.5} 

MeV

amu
 (high 

energy values). 

Key words: ion-atom collisions, electron capture, differential cross sections 

1. INTRODUCTION 

Electron capture in ion-atom collisions is a physical process that has attracted a lot of 

attention, both from theoretical and experimental perspectives. The interest in studying 

electron capture is two-fold. From a purely fundamental standpoint, there is a clear 

incentive to understand the underlying mechanisms of electron capture, in the context of 

quantum theory. From an application-oriented standpoint, electron capture cross sections 

are of crucial importance in interdisciplinary areas, which include plasma physics, 

thermonuclear fusion research, astrophysics and medical physics (hadron radiotherapy). 

Cross section values are needed for the evaluation of electron capture overall energy 

balance, which is crucial in plasma diagnostics and thermonuclear fusion (Anderson et al., 

2000; Donné et al., 2007; Hemsworth et al., 2009; Isler, 1994; Marchuk, 2014; Ralchenko 

et al., 2008; Thomas, 2012), as well as astrophysics (Cravens, 2002; Heng and Sunyaev, 
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2008). In hadron radiotherapy, dose planning systems must include the contributions from 

energy losses due to charge exchange (Alberg-Fløjborg, 2020; Belkić, 2010; Belkić, 2021a; 

Belkić, 2021b; Ebner and Kamada, 2016; Rivarola, 2013; Suit, 2010), which are given in 

the form of cross section values (either calculated or measured). 

A purely three-body problem, where the projectile is a completely stripped ion, while 

the target is a hydrogen-like atom/ion, is the simplest system where electron capture can 

be studied. Three-body problems can therefore be used as a benchmark testing ground for 

theoretical approaches to treating single-electron capture. The topic of the present work is 

exactly one such process, of electron capture in collision between fast alpha particles and 

hydrogen atoms in their ground states. Usually, findings on the values of differential and 

total cross sections are reported. Of the two, a more stringent test of the theory is its 

performance regarding the differential cross sections, which usually exhibit much more 

nuance than total cross sections. This is precisely the reason why this work reports on the 

differential cross sections, in the framework of the three-body boundary-corrected 

intermediate-states method (BCIS-3B). This method was first developed for ground-to-

arbitrary state capture recently in Milojević et al., 2020, and further applied to a wide array 

of processes in Delibašić et al., 2021a; Delibašić et al., 2021b and Delibašić et al., 2022. 

This work presents the first application of the BCIS-3B method to calculate the differential 

cross sections in 𝛼 + H(1s) collisions, for ground-to-arbitrary state capture. 

The prior form BCIS-3B method admits the same perturbation potential and asymptotic 

wavefunction in the entrance channel as the prior form CB1-3B, i.e. the three-body 

boundary-corrected first-Born approximation (Belkić et al., 1979). In the exit channel, the 

asymptotic wavefunction is the same as in the three-body continuum distorted-wave 

method (CDW-3B) from Belkić et al., 1979 and Cheshire, 1964. While CB1-3B is a first-

order theory, the presence of the continuum wave makes BCIS-3B a second-order theory. 

This enables the BCIS-3B method to predict Thomas double scattering, which is distinctly 

a second-order effect, and as such cannot be predicted by first-order theories. Due to the 

use of eikonal hypothesis, the BCIS-3B method is a high-energy theory. Thus, it is expected 

to produce valid results predominantly in the high-energy region (𝐸 > 400 
keV

amu
), as well as 

possibly in the intermediate energy region (𝐸 ∈ [25,  400] 
keV

amu
), although to a lesser extent. 

There are unfortunately no available experimental data on the differential cross section 

values for 𝛼 + H(1s) collisions. However, due to the previously demonstrated success of 

the BCIS-3B method in comparison with available measurements for differential cross 

sections in 𝑝 + H(1s) collisions (Milojević et al., 2020), as well as total cross sections in 

various other processes (Milojević et al., 2020; Delibašić et al., 2021a; Delibašić et al., 

2021b; Delibašić et al., 2022), the presently reported cross sections can be taken as a 

trustworthy theoretical benchmark. Possible future measurements would thus greatly 

benefit from a comparison with hereby given differential cross section values. The 

differential cross sections for electron capture in 𝛼 + H(1s) collisions obtained via 

theoretical coupled-state calculations were previously reported in Winter et al., 1987 and 

Winter, 1988, but only for the low to low-intermediate energy region. The process of 

electron capture in 𝛼 + H(1s) collisions was also recently studied via the standard three-

body classical trajectory Monte Carlo (CTMC) and quasi-classical trajectory Monte Carlo 

(QCTMC) models in Ziaeian and Tőkési, 2022 (only total cross sections were reported). 

Atomic units will be used throughout unless otherwise stated. 
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2. THEORY 

The process of electron capture in 𝛼 + H(1s) collisions is analyzed in the wider 

framework of collisions between fast completely stripped projectiles and hydrogen-like 

targets in their ground states, for various levels of state-resolved final states: 

   𝑍P + (𝑍T, 𝑒)1s → (𝑍P, 𝑒)𝑛𝑙𝑚 + 𝑍T, (1) 

 𝑍P + (𝑍T, 𝑒)1s → (𝑍P, 𝑒)𝑛𝑙 + 𝑍T, (2) 

                                       𝑍P + (𝑍T, 𝑒)1s → (𝑍P, 𝑒)𝑛 + 𝑍T, (3) 

                                       𝑍P + (𝑍T, 𝑒)1s → (𝑍P, 𝑒)Σ + 𝑍𝑇 . (4) 

In Eqs. (1)-(4), 𝑍P and 𝑍T represent the charges of the projectile P and target nucleus T, 

with masses 𝑀P and 𝑀T, respectively, and 𝑒 represents the electron. All Eqs. (1)-(4) pertain 

to electron capture which occurs from the ground state 1s of the hydrogen-like target, into 

an arbitrary 𝑛𝑙𝑚 final state of the projectile, with the {𝑛, 𝑙, 𝑚} being the usual triplet of 

quantum numbers. Eqs. (1), (2) and (3) represent capture from the ground state into 

arbitrary final states 𝑛𝑙𝑚, arbitrary subshells 𝑛𝑙 and shells 𝑛, respectively. Eq. (4) 

represents electron capture into arbitrary (all) the final states of the projectile. 

The transition amplitude matrix elements in the prior form of the BCIS-3B method are 

given by (Milojević et al., 2020): 

 𝑇𝑛𝑙𝑚,100(η⃗ ) = 𝑁+(νT) 𝑍P ∫∫𝑑𝑠 𝑑�⃗� 𝜑𝑛𝑙𝑚
∗ (𝑠 ) (

1

𝑅
−

1

𝑠
)𝜑100(𝑥 )𝑒

𝑖�⃗⃗� ⋅�⃗� −𝑖�⃗� ⋅𝑠  

 × 𝐹(𝑖νT, 1, 𝑖𝑣𝑥 + 𝑖𝑣 ⋅ 𝑥 )(𝑣𝑅 + 𝑣 ⋅ �⃗� )
𝑖𝜉
, (5) 

with the following nomenclature: 𝜉 = 𝑍P/𝑣, νT = 𝑍T/𝑣 and 𝑁+(νT) = Г(1 − 𝑖νT)𝑒
𝜋νT/2. The 

projectile velocity along the z-axis is denoted by 𝑣 , the momentum transfer by β⃗ = −η⃗ + β𝑧𝑣 ̂, 

and its component along the 𝑧 − axis by β𝑧 = −𝑣/2 − Δ𝐸/𝑣. The difference between the initial 

and final bound state energies is given by Δ𝐸 = 𝐸1
𝐻 − 𝐸1

𝐻𝑒. The transverse momentum transfer 

vector is given by η⃗ = (η 𝑐𝑜𝑠 ϕη , η 𝑠𝑖𝑛ϕη , 0), and satisfies the property η⃗ ⋅ 𝑣 = 0. Vectors 𝑥  and 

𝑠  represent the position vectors of the electron relative to the target and projectile, respectively, 

and �⃗�  is the relative position vector of the projectile to the target. The bound-state wavefunctions 

of the initial, ground-state hydrogen-like target (𝑍T, 𝑒)1s, and the final, arbitrary-state hydrogen-

like projectile system (𝑍P, 𝑒)𝑛𝑙𝑚, are denoted by φ100(𝑥 ) and φ𝑛𝑙𝑚(𝑠 ), respectively. Lastly, 

𝐹(𝑖νT, 1, 𝑖𝑣𝑥 + 𝑖𝑣 ⋅ 𝑥 ) represents the confluent hypergeometric function. 

The amplitude matrix elements given by Eq. (5) are in the form of six-dimensional 

integrals. Fortunately, some of the integrations can be performed analytically (Milojević et 

al., 2020), allowing 𝑇𝑖𝑓 to be reduced to a two-dimensional integral over real variables in 

the interval [0,1]. The state-selective differential cross sections for capture into an arbitrary 

final state 𝑛𝑙𝑚 of the projectile are then given by: 

 
𝑑𝑄𝑛𝑙𝑚

𝑑Ω
(
ɑ0
2

sr
) =

μ2

4π2
|Tif(η⃗ )|

2, (6) 

where μ =
𝑀P𝑀T

𝑀P+𝑀T
 is the reduced mass of the collisional system. The state-selective differential 

cross sections for capture into 𝑛𝑙 subshells and 𝑛 shells are then, respectively, given by: 
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𝑑𝑄𝑛𝑙

𝑑Ω
= ∑

𝑑𝑄𝑛𝑙𝑚

𝑑Ω

+𝑙
𝑚=−𝑙 ,      

𝑑𝑄𝑛

𝑑Ω
= ∑

𝑑𝑄𝑛𝑙

𝑑Ω

𝑛−1
𝑙=0 . (7) 

The final step would be the calculation of the state-summed differential cross sections, 

taking into account the contributions from all possible 𝑛. Since this is clearly not possible, 

cross sections 
𝑑𝑄𝑛

𝑑Ω
 were calculated up to some value 𝑛max, while the contributions to the 

state-summed total cross sections from higher excited final states with 𝑛 > nmax  were 

included via the Oppenheimer 𝑛−3 scaling law (Oppenheimer, 1928). The choice of 𝑛max 

was energy dependent, since the contribution from higher excited states becomes negligible 

with increasing incident energy values. Due to this fact, we set 𝑛max = 4 for E =

{100,  150,  300,  1300} 
keV

amu
 , 𝑛max = 3 for E = {2.5,  5.0} 

MeV

amu
, and 𝑛max = 2 for E =

{7.5,  12.5} 
MeV

amu
 . All these choices for 𝑛max  were sufficient, as will be shown in the Results 

and discussion section. The Oppenheimer 𝑛−3 scaling law, applied for 𝑛max = {2,  3,  4} , 

results in the following expressions for state-summed differential cross sections: 

 
𝑑𝑄

𝑑Ω
=

𝑑𝑄1

𝑑Ω
+

𝑑𝑄2

𝑑Ω
+

𝑑𝑄3

𝑑Ω
+ 2.561

𝑑𝑄4

𝑑Ω
 , (8) 

 
𝑑Q

𝑑Ω
=

𝑑Q1

𝑑Ω
+

𝑑Q2

𝑑Ω
+ 2.081

𝑑Q3

𝑑Ω
 , (9) 

 
𝑑Q

𝑑Ω
=

𝑑Q1

𝑑Ω
+ 1.616

𝑑Q2

𝑑Ω
 , (10) 

with 
𝑑Q

𝑑Ω
≡

𝑑QΣ

𝑑Ω
 . 

Numerical integrations in Eq. (5) were performed via the Gauss-Legendre quadrature 

rules. The condition of convergence to at least two decimal places for both the state-

selective and state-summed differential cross sections was imposed, for every energy value 

considered. The same number of integration points was used per each of the two integration 

axes. Convergence becomes a more prominent issue with increasing energy values, as well 

as increasing 𝑛 values. For the lowest examined energy values, a total of 368 integration 

points were sufficient along each of the two integration axes, while up to 2256 integration 

points were needed for 𝐸 = 12.5 
MeV

amu
  and 𝑛 = 2. 

3. RESULTS AND DISCUSSION 

Differential cross sections, both state-selective and state-summed, were calculated in 

the intermediate and high energy range for electron capture in the following collisional 

process: 

 𝛼 + H(1s) → He+(Σ) + 𝑝, (11) 

where α represents an alpha particle (completely stripped helium He2+), and 𝑝 represents 

a proton. The results were graphically represented in Figures 1-8. Unfortunately, there are 

no available experimental data to make a comparison with, and truly assess the validity of 

the present theoretical method. However, the BCIS-3B method was previously demonstrated to 

be in great agreement with measurements, for a very wide variety of projectiles and targets, 

as well as incident energy values, regarding both differential and total cross sections (Milojević 

et al., 2020; Delibašić et al., 2021a; Delibašić et al., 2021b; Delibašić et al., 2022). Thus, the 

differential cross sections presented in this work can be taken with a high level of confidence 
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and could be used as benchmarks for other theoretical methods (as well as experimental 

results). Of course, possible future measurements would be highly desirable, to compare 

with the present theoretical findings. 

 

 

Fig. 1 State-selective and state-summed differential cross sections (
𝒅𝑸𝚺

𝒅𝛀
)
𝒍𝒂𝒃

≡ (
𝒅𝑸

𝒅𝛀
)
𝒍𝒂𝒃

(
cm2

sr
) for 

process 𝛂 + 𝐇(𝟏𝐬) → 𝐇𝐞+ + 𝒑 as a function of scattering angle 𝛉𝒍𝒂𝒃 in the laboratory 

frame, for incident energy 𝑬 = 𝟏𝟎𝟎
keV

amu
 . All the results are from the present theoretical 

BCIS-3B method: dashed line – capture into 𝒏 = 𝟏 final state, dotted line – capture into 

𝒏 = 𝟐 final state, dashed-dotted line – capture into 𝒏 = 𝟑 final state, dashed-double-

dotted line – capture into 𝒏 = 𝟒 final state, full line – capture into any final state. 

 

Figs. 1-3 show the present theoretical results for state-selective and state-summed 

differential cross sections in α + H(1s) collisions for intermediate incident projectile energy 

values 𝐸 = {100,   150,   300} 
keV

amu
 , respectively. All these results explicitly include state-

selective cross sections values for capture up to 𝑛max = 4. All three Figs. 1-3 show that the cross 

sections attain their maximal value for forward scattering, i.e. at 𝜃 = 0 mrad, followed by a 

sharp drop. A change of slope of the curves can be seen at about 𝜃 = 0.15 − 0.2 mrad, 

followed by a long tail. This holds for all the state-selective cross sections, as well as state-

summed. These profiles are a consequence of two competing mechanisms: electronic and 

nuclear motions. The electron-nucleus interaction dominates at smaller angles, which 

manifests as the forward peak. The nucleus-nucleus elastic Rutherford scattering has 

negligible effects in the vicinity of the forward cone but becomes the dominant scattering 

mechanism at larger angles, exhibiting a long tail. The interference of these competing 

effects results in the observed cross section profiles. 
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Fig. 2 The same as in Fig. 1, except for incident energy 𝑬 = 𝟏𝟓𝟎
keV

amu
 . 

 

In all three Figs. 1-3, for larger angles (Rutherford scattering) the cross sections 
𝑑𝑄1

𝑑Ω
 

dominate, with the contribution from each higher 
𝑑𝑄𝑛

𝑑Ω
,  𝑛 > 1 being significantly lesser than the 

previous one. The forward scattering case exhibits a different pattern, however. In Fig. 1, the 
𝑑𝑄2

𝑑Ω
 contribution dominates, followed by 

𝑑𝑄3

𝑑Ω
 and 

𝑑𝑄4

𝑑Ω
, while 

𝑑𝑄1

𝑑Ω
 provides the least significant 

contribution. The situation slowly shifts with rising energy, however, as Fig. 2 displays the 

contribution from 
𝑑𝑄1

𝑑Ω
 to be on par with the one from 

𝑑𝑄4

𝑑Ω
 , while in Fig. 3 it holds that 

𝑑𝑄2

𝑑Ω
>

𝑑𝑄1

𝑑Ω
>

𝑑𝑄3

𝑑Ω
>

𝑑𝑄4

𝑑Ω
 . 

Differential cross section profiles shown in Fig. 1 and Fig. 2 exhibit a minimum at about 

θ ≈ 0.1 mrad (the so-called dark angle), which can be seen in 
𝑑𝑄1

𝑑Ω
 and 

𝑑𝑄Σ

𝑑Ω
 . These dips are 

most likely unphysical and would not be reproduced in measurements (as in the 𝑝 + H(1s) 

collisions case, seen in Milojević et al., 2020). The dip results from the mutual cancellation 

of the perturbation potential nucleus-nucleus and nucleus-electron terms, i.e. 
𝑍P

𝑅
−

𝑍P

𝑠
. The dip is 

entirely masked for 
𝑑𝑄𝑛

𝑑Ω
,  𝑛 ∈ {2,  3,  4} . by the constructive interference terms of highly 

oscillatory behavior of the electronic full Coulomb wave function in the transition matrix 

integrand. Fig. 3 displays such minima for all 
𝑑𝑄𝑛

𝑑Ω
,  𝑛 ∈ {1,  2,  3,  4} . The position of the dark 

angle shifts to lower values with increasing incident energy, as can be seen in Figs. 1-3. 
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Fig. 3 The same as in Fig. 1, except for incident energy 𝑬 = 𝟑𝟎𝟎

keV

amu
 . 

 

Figs. 4-8 show the present theoretical results for state-selective and state-summed 

differential cross sections in 𝛂 + H(1s) collisions for high incident projectile energy values 𝑬 =

{𝟏. 𝟑,  𝟐. 𝟓,  𝟓. 𝟎,  𝟕. 𝟓,  𝟏𝟐. 𝟓} 
MeV

amu
 , respectively. Fig. 4 for 𝑬 = 𝟏. 𝟑 

MeV

amu
 explicitly includes the 

contributions from capture up to 𝒏max = 𝟒. Due to the already negligible contributions from 
𝒅𝑸𝟒

𝒅𝛀
 

at 𝑬 = 𝟏. 𝟑 
MeV

amu
 , explicit contributions up to 𝒏max = 𝟑 were included at 𝑬 = 𝟐. 𝟓 

MeV

amu
 and 𝑬 =

𝟓 
MeV

amu
 in Fig. 5 and Fig. 6, respectively. Due to the already negligible contributions from 

𝒅𝑸𝟑

𝒅𝛀
 at 

𝑬 = 𝟓 
MeV

amu
 , explicit contributions up to 𝒏max = 𝟐 were included at 𝑬 = 𝟕. 𝟓 

MeV

amu
 and 𝑬 =

𝟏𝟐. 𝟓 
MeV

amu
 in Fig. 7 and Fig. 8, respectively.  

As can be seen in all the Figs. 4-8, all the state-selective and state-summed differential cross 

sections follow the same angular profile (qualitatively), with 
𝒅𝑸𝒏

𝒅𝛀
<

𝒅𝑸𝒏−𝟏

𝒅𝛀
 , for all the displayed 

𝒏. This holds for all the five high energy values considered. An obvious feature in all these 

profiles is a second peak, in addition to the forward scattering one. This peak corresponds 

to the Thomas double scattering of the captured electron, which the BCIS-3B method 

correctly predicts, as a second-order theory. This effect is the quantum mechanical 

counterpart of the classical Thomas two-step billiard-type collision, where the electron first 

collides with the projectile, then the target, and finally being captured by the projectile .   
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Fig. 4 The same as in Fig. 1, except for incident energy 𝑬 = 𝟏. 𝟑

MeV

amu
 . 

 

 
Fig. 5 The same as in Fig. 1, except for incident energy 𝑬 = 𝟐. 𝟓

MeV

amu
 and capture up to 𝒏 = 𝟑. 
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The projectile is (in the classical picture) deflected at the angle θ𝑑𝑠 =
1

𝑀P

√3

2
 , which is located 

at θ𝑑𝑠 ≈ 0.12 𝑚𝑟𝑎𝑑 (lab) in the case of an alpha particle projectile. As can be seen in Figs. 

4-8, in the quantum mechanical picture, a peak in differential cross sections is predicted at 

about this angle value. This is a feature predicted in all the second order theories and is 

experimentally observed (e.g. for 𝑝 + H(1s) collisions in Vogt et al., 1986). Forward 

scattering dominates with respect to the Thomas double scattering peak for all the displayed 

incident energies. However, the relative magnitude of the Thomas double scattering peak, 

with respect to the forward scattering peak, increases with rising incident energy values. 

For energies even greater than 𝐸 = 12.5 
MeV

amu
 , Thomas double scattering would eventually 

begin to dominate (not shown). 

 

 
Fig. 6 The same as in Fig. 1, except for incident energy 𝑬 = 𝟓

MeV

amu
 and capture up to 𝒏 = 𝟑. 

Between the forward and the Thomas double scattering peak, a minimum can be 

observed. This minimum in Figs. 4-8 for high incident energy values is, however, of a 

different nature than the one observed in Figs. 1-3 for intermediate incident energy values. 

This minimum stems from the destructive interference from the first- and second-order 

collisional events (Milojević et al., 2020), with each of them producing its own peak 

(forward and Thomas double scattering, respectively). For angles larger than θ𝑑𝑠, 

Rutherford scattering dominates, which manifest as a long tail in the differential cross 

sections profile. 
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Fig. 7 The same as in Fig. 1, except for incident energy 𝑬 = 𝟕. 𝟓
MeV

amu
 and capture up to 𝒏 = 𝟐. 

 

 
Fig. 8 The same as in Fig. 1, except for incident energy 𝑬 = 𝟏𝟐. 𝟓

MeV

amu
 and capture up to 𝒏 = 𝟐. 
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4. CONCLUSION 

 This work investigated electron capture in collisions between fast alpha particles and 

atomic hydrogen, using the BCIS-3B method (theoretical approach). State-selective and 

state-summed differential cross sections were calculated for incident projectile energy 

values belonging to the intermediate-energy range, for 𝐸 = {100,   150,   300} 
keV

amu
 , as well as 

the high-energy range, for 𝐸 = {1.3,  2.5,  5.0,  7.5,  12.5} 
MeV

amu
. The explicit contributions from 

capture up to 𝑛max = {2,  3,  4} , with arbitrary 𝑙𝑚, were included. The choice of 𝑛max value 

depended on the incident projectile energy. When calculating the state-summed cross 

sections, contributions from higher excited states with 𝑛 > 𝑛max were approximated via the 

Oppenheimer 𝑛−3 scaling law. The obtained structures of the differential cross section 

profiles were analyzed in detail and their nature thoroughly explained. The BCIS-3B 

method, being a second-order theory, correctly predicts the Thomas double scattering 

mechanism, which is a prominent feature of high-energy ion-atom collisions. 

Unfortunately, there are no available measurements for making a comparison with the 

presently obtained theoretical data. Nevertheless, the previously demonstrated success of 

the BCIS-3B method, in comparison with available experimental data for a great number 

of other electron capture processes, practically gives it a benchmark status. The obtained 

theoretical results could effectively be used for validation of the possible future 

measurements made for this electron capture process, especially for high-energy collisions. 
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DIFERENCIJALNI EFIKASNI PRESECI ZA ELEKTRONSKI 

ZAHVAT IZ ATOMSKOG VODONIKA ALFA ČESTICAMA  

Elektronski zahvat u sudarima brzih alfa čestica sa atomom vodonika je izučavan u okviru prior verzije 

tročestičnog granično korektnog metoda sa kontinuumskim intermedijarnim stanjima (BCIS-3B). 

Parcijalni i sumirani diferencijalni efikasni preseci su predstavljeni za finalna stanja sa glavnim kvantnim 

brojem 𝑛 do 𝑛max = {2,3,4}, u zavisnosti od vrednosti incidentne energije projektila. Efikasni preseci su 

izračunati za zahvat u proizvoljna finalna stanja projektila sa orbitalnim i magnetnim kvantnim brojevima 

𝑙𝑚. Doprinosi efIkasnim presecima od strane viših pobuđenih stanja 𝑛 > 𝑛max uračunati su korišćenjem 

Openhajmerovog 𝑛−3 zakona skaliranja. Dobijene ugaone zavisnosti diferencijalnih efikasnih preseka su 

detaljno analizirane, za vrednosti incidentne energije projektila 𝐸 = {100,  150,  300} 
keV

amu
  (srednje) i 𝐸 =

{1.3,  2.5,  5.0,  7.5,  12.5} 
keV

amu
 (visoke vrednosti energije).  

Ključne reči: jon-atomski sudari, elektronski zahvat, diferencijalni efikasni preseci 


