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Abstract. A vacuum homogeneous and anisotropic Kantowski-Sachs minisuperspace 

cosmological model is considered. In a classical case, Lagrangian of the model is 

reduced by a suitable coordinate transformation to Lagrangian of two decoupled 

oscillators with the same frequencies and with zero energy in total (an oscillator-ghost-

oscillator system). The model is formulated also on noncommutative space.  
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1. INTRODUCTION 

The study of early stages of the universe evolution demands quantum approach. In the 

absence of a complete theory of quantum gravity and quantum cosmology, it is important 

to analyze particular classical cosmological models and their quantum versions most 

often within the approach that uses canonical quantization or path integral quantization. 

Both of these approaches demand determination of the wave function (of the universe) 

for a quantum cosmological model. By doing so in the former case (canonical 

quantization) the wave function is acquired through solving Wheeler-DeWitt equation 

(DeWitt, 1967), in the latter case (path integral quantization) it can be done by Feynman 

minisuperspace propagator with appropriate boundary condition (the best known are the 

Hartle-Hawking no-boundary proposal (Hartle and Hawking, 1983) and the Vilenkin 

tunneling proposal (Vilenkin, 1982). 

On the other hand, the study of physics of the black holes takes an important place in 

the theory of quantum gravity. Namely, the general relativity, besides the initial 
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singularity of the universe, predicts the existence of local singularities i.e. the existence 

of black holes. That enables us to come to a significant conclusion related to the early 

stages of the creation of the universe by studying the characteristics of these objects. 

In this paper we consider the Schwarzschild black hole interior as a homogeneous and 

anisotropic Kantowski-Sachs minisuperspace cosmological model without a matter field and 

the cosmological constant. This approach is based on a diffeomorphism between the 

Schwarzschild solution of the Einstein field equation and the corresponding solution of this 

cosmological model. Namely, within the Schwarzschild sphere, the coordinate transformation 

t  r, transforms Schwarzschild metric to anisotropic Kantowski-Sachs metric. Within the 

classical analytical approach, by a suitable coordinate transformation, Lagrangian of the 

model, becomes Lagrangian of an oscillator-ghost-oscillator system of two decoupled 

oscillators, with equal frequencies and with zero total energy. 

Motivated by a possible non-Archimedean and/or noncommutative structure of the space-

time at the Planck scale (Vladimirov et al., 1994), we may discuss a p-adic and/or 

noncommutative form of this model. The prediction of the space-time discreteness structure 

around Planck distances (1033 cm), is common to both of these approaches (p-adic and 

noncommutative). In p-adic case this discreetness is implicitly present (Djordjevic et al., 

2002), in noncommutative case it is explicitly present through commutation relations of 

noncommutative coordinates and/or their conjugate momenta. In this paper noncommutative 

form of the model is considered. Noncommutative coordinates are used for the first time by 

Wigner (Wigner, 1932) and Snyder (Snyder, 1947). This idea, used by Connes (Connes, 

1985) and Woronowicz (Woronowicz, 1987) in noncommutative geometry, enabled the 

development of the new formulation of quantum gravity through noncommutative 

differential calculus (Maceda et al., 2004; Várilly, 2004; Wess and Zumino, 1990). 

After determination and decoupling of Langrangian for the classical anisotropic 

Kantowski-Sachs model, we determine a classical action in this classical (commutative) case. 

In the noncommutative case, classical action is determined from Lagrangian of 

noncommutative version of the model. 

2. THE CLASSICAL MODEL 

In the canonical formulation of the general relativity the starting point is 3+1 

decomposition of metric. The Einstein-Hilbert action, within this approach, has the following 

form:  

 
(3) 2 3 31
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where Lm is the Lagrangian of the matter field, G is the gravitational constant, (3)R is the Ricci 

scalar of the intrinsic 3-geometry,  is the determinant of the intrinsic 3-metric tensor hik (or 

first fundamental form), Kik is the extrinsic curvature tensor (or second fundamental form),  

is the cosmological constant and K = K
i

i . 

The metric form for a homogeneous and anisotropic Kantowski-Sachs minisuperspace 

cosmological model is: 
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where h and l are scale factors of this metric.  

On the other hand, the Schwarzschild metric is: 
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It diverges in case r = 0 (Schwarzschild or gravitational singularity) and on the so-

called Schwarzschild sphere (the event horizon) for r = rg (''apparent'' singularity1), where 

rg = 2Gm/c2 is the gravitational or Schwarzschild radius for an object of mass m. 

     For the metric form (3), we can see that when r < rg, i.e. inside of the event horizon, 

Schwarzschild metric components g00 = gtt and g11 = grr changed their signs. This 

suggests that space and time change roles in a way, once the event horizon is passed. 

Namely, the time coordinate, for an observer outside the event horizon, becomes spatial-

like for another observer inside the Schwarzschild sphere. In this sense, for both 

observers, there is one possible direction of movement, for an outside observer in time 

and for an inside observer in space (right to singularity). Regarding the previous, we can 

consider a possibility that Schwarzschild sphere interior could be described by a square 

metric form acquired by substitution t  r in (2): 

                          2 1 2 2 2 2 2 2( 1) ( 1) ( sin ),
g gr r

ds dt dr t d d
t t

                                 (4) 

which metric components explicitly depend on time. This metric has the same form as the 

Kantowski-Sachs metric (2) with l(t) = rg / t  1, h(t) = t and N(t) = 1. 

From the Einstein-Hilbert action (1), without a matter field and the cosmological 

constant with the metric (2) one gets Lagrangian for the vacuum Kantowski-Sachs model 

in the form (Jalalzadeh and Vakili, 2012): 
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where V0 has the meaning of a constant volume. By the rescaling of the lapse function 
22 ,N h Nl  with transformations (Brehme, 1977): 

 

2

21
) ,

2
( ,

u v
h u v

u v
l

 
     

 (6) 

Lagrangian (5) becomes decoupled: 
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where 
18/8 2.43 10plM c G    GeV is the reduced Planck mass. Because of the 

possibility of a choice of the lapse function N  (gauge fixing), we can consider factor 

                                                           
1 This singularity can be removed by a suitable coordinate transformation (for example Kruskal-Szekeres 

transformation).  
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2

0 /plM V N  in the formula (7) as a constant. Considering N   , and bearing in mind the 

invariance of the system dynamics in relation to multiplication of Lagrangian with constant, 

instead of (7) we can consider: 

 2 2 2 2 2 2( ) ( ),L u u v v      (8) 

as a Lagrangian which describes the model. This is the Lagrangian of an oscillator-ghost-

oscillator system with zero energy. The corresponding Euler-Lagrangian equations are: 

 2 20, 0.u u v v     (9) 

The general solution of (9) is: 

 1 2 1 2cos( ), cos( ),u A t A v B t B       (10) 

where A1, A2, B1, B2 are constants of integration. Then, particular solution for initial 

conditions ( )u t u  , ( )u t u  , ( )v t v   and ( )v t v  , is:              
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By substituting (11) into (8) the classical Lagrangian clL is obtained, and after its 

integration, in time, we get the classical action for this model: 
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where T t t   . 

3. THE MODEL ON NONCOMMUTATIVE SPACE 

Space-time structure at the Planck scale is one of the most challenging questions in 

high energy physics. Two of the most justified approaches to this problem are: non-

Archimedean (Djordjevic and Dragovich, 1997; Djordjevic et al., 2002, 2003, 2014) and 

a noncommutative approach which is presented in this part of the paper. 

In the presence of noncommutativity of the spatial type i.e. (in Poisson brackets) {u, v}= 

  0, {u, u} = {v, v} = 1, {u, v} = {v, u} = 0 and {u, v} = 0, with transformations: 
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two-oscillator Lagrangian (8) becomes: 

 2 2 2 2 2 2 2 2 2 2 2[(1 ) ] [(1 ) [2 .]]L u u v v uv vu             (14) 

The corresponding Euler-Lagrangian equations are: 

 2 2 2 22 0; 2 0,u v u v u v            (15) 

where 2 2/ 1     . In the commutative regime ( = 0) Lagrangian (14) and equations 

(15) becomes (8) and (9), respectively.  
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The system of equations (15) has a solution of the following type (Sepangi et al., 2009): 
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where
2 21     . By substitution of the initial conditions u(0) = u', u(T) = u", 

v(0) = v' and v(T) = v" in (17) and (18) one gets constants of integration as follows: 
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By substituting (18) into (16) and (17) we obtain a classical solution of equations of 

motions whose replacement in (14) gives the classical Lagrangian of the model for the 

solution of Euler-Lagrange equations (15). Then, in the standard manner we obtain the 

corresponding classical action: 
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4. CONCLUSION 

In this paper we presented a homogeneous and anisotropic Kantowski-Sachs 

minisuperspace cosmological model in the classical and noncommutative case. In the 

classical case, we determined action and we saw that the dynamics of the model described 

the dynamics of the Schwarzschild black hole interior. In the noncommutative case, 

classical action was calculated, as well. The subject of further study may be the calculation 
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of the Faynman propagators, which will lead to the formulation of quantum, commutative 

and noncommutative, Kantowski-Sachs model of the Schwarzschild black hole interior. 
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KANTOVSKI-SAKS MINISUPERPROSTORNI KOSMOLOŠKI 

MODEL NA NEKOMUTATIVNOM PROSTORU 

Razmatran je vakuumski homogeni i anizotropni Kantovski-Saks minisuperprostorni kosmološki 

model. U klasičnom slučaju, Lagranžijan modela je pogodnim koordinatnim transformacijama sveden 

na Lagranžijan dva dekuplovana oscilatora sa jednakim frekvencama i nultom ukupnom energijom 

(''oscillator-ghost-oscillator system''). Model je takođe formulisan na nekomutativnom prostoru. 

Ključne reči: 3+1 formalizam, Kantovski-Saks model, nekomutativnost  


