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Abstract. The applicability of the single-electron model in describing the electron 

detachment of the hydrogen negative ion in strong (static or laser) fields is examined. By 

comparing the values for the lowest state energies and detachment rates obtained using two 

different short-range model-potentials with the results of recent ab initio calculations using 

the full two-electron description (Milošević and Simonović, 2016), it is found that the single-

electron description is applicable for the field intensities up to few hundred GW/cm2. This 

description, therefore, can be used for studying multiphoton processes or the electron 

detachment via tunneling at these field strengths, but fails in over-the-barrier regime. 
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1. INTRODUCTION 

Negative ions generally represent a special class of atomic systems (see overview in 

Andersen, 2004) due to the properties which are significantly different from those of 

neutral atoms and positively charged ions. While in the former the electrons are bound in 

the long-range Coulomb potential, the excess electron in negative ions is due to the 

neutral atomic residue bound in a short-range potential. In addition, the corresponding 

binding energies are significantly lower than the atomic ionization potentials. The 

hydrogen negative ion (H
–
), as the simplest among them, has also some specific features 

like the absence of singly excited states. In other words this two-electron system has only 

one bound state, that is the ground state, and a series of autoionizing doubly-excited 

states. The binding energy of H
–
 is EB = 0.7542 eV (0.0277 a.u.) (see e.g. Andersen et al., 
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1999). A very weak binding and the absence of a long-range Coulomb attraction for the 

separated electron (the atomic residue is the neutral hydrogen atom) leads to a specific 

radial correlation between the electrons in the ground state such that one electron is bound 

much closer to the nucleus than the other which is weakly held at a distance of 4-5 Bohr 

radii from the nucleus (Chandrasekhar, 1944, see also Rau, 1996). Such a configuration 

suggests a very useful single-electron picture where the outer electron is weakly (loosely) 

bound in a short-range attractive potential. To a good approximation the potential acting 

on the outer electron due to the neutral atom is a sum of a short-range potential and the 

polarization potential falling off as 1/r
4
.  

Collisions between photons and H
−
 leading to one-electron ejection (electron 

photodetachment) have played an important role in the study of this ion (see Andersen, 2004 

and references therein). At the threshold of the single-photon detachment the residual hydrogen 

atom is in principle left in the ground state and no long-range forces act on the outgoing 

electron (Bryant and Halka, 1996). The experimental cross section is found to be in a good 

agreement with the Wigner low (that is a feature of short-range potentials), confirming also the 

threshold energy Eth = EB = 0.7542 eV (Lykke at al, 1991). During the last two decades, intense 

lasers have made it possible to observe the effects of multiphoton detachment processes (Rau, 

1996, Andersen, 2004). In contrast to the single-photon case, the multiphoton detachment may 

occur at the photon energies ћω < EB, but since the detachment rates in this case are 

significantly lower, in order to get a measurable effect one needs much larger intensities. 

At stronger fields, however, another mechanism for the electron detachment arises – 

the quantum-mechanical tunneling. A strong field distorts the potential of atomic residue 

forming a potential barrier (Stark saddle) through which the electron can tunnel. At even 

stronger fields the barrier may be suppressed below the energy of the bound state and 

over-the-barrier detachment (OBD) occurs. The transition from the multiphoton to the 

tunnelling regime is governed by the Keldysh parameter γ = ω(2meEB)
1/2

/eF (Keldysh, 

1965), where ω is the frequency of the electromagnetic field and F is the peak value of its 

electric component. This parameter characterizes the degree of adiabaticity of the motion 

through or over the barrier. If γ >> 1 (low-intensity/short-wavelength limit) multiphoton 

processes dominate, whereas for γ << 1 (high-intensity/long-wavelength limit) the tunneling 

or OBD mechanism does. In the latter case the quasistatic description is a good approximation. 

It assumes that the electric field changes slowly enough that a static detachment rate can be 

calculated for each instantaneous value of the field. Then the detachment rate for the 

alternating field can be obtained by averaging the static rates over the field period. 

In a recent study we compared the values for the lowest state Stark shift and detachment 

rates for H
−
 at different strengths of the applied (quasi)static field, determined by using the 

single-electron and the full two-electron description (Milošević and Simonović, 2016). It is 

shown that the single-electron description fails in OBD and partially in the tunneling regime. 

Here we focus on the range of field strengths where the single-electron approach may be 

valid. In the next section we introduce the single-electron model for the hydrogen negative 

ion in the external (quasi)static field and consider three different short-range model-

potentials. The numerical (complex-rotation) method is described in Section 3. Finally, in 

Section 4, we present numerical results (the lowest-state energies and detachment rates) and 

compare them with the results obtained using the full two-electron description. 
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2. MODELS
 

As mentioned in the introductory part, the configuration of the ground state of H
–
 

suggests a one-electron description where the outer (loosely bound) electron moves in a 

short-range potential V(r) describing the attraction by the neutral atomic residue. Then, in 

the presence of a (quasi)static electric field F the dynamics of the outer electron may be 

described by the Hamiltonian (in atomic units) 

 FzrVH  )(
2

2
p , (1) 

where r = (x, y, z) and p are the electron’s position and momentum, respectively. The 

potential V(r) is usually calibrated such that the lowest eigenenergy ε(F) of this 

Hamiltonian when F = 0 has the value –EB. When F ≠ 0 the total potential Vtot = V(r) – Fz 

has the potential barrier which the electron can tunnel through or escape over it. Thus, the 

lowest state, which is an exact bound state when F = 0, has the resonant character when 

the field is present. The width Γ of this resonant state, which increases with F, determines 

the electron detachment rate w(F) = Γ(F)/ħ (hereafter we set ħ = 1). 

Another effect of the field is the Stark shift of energy levels. For F << 1 the Stark shift can 

be expanded in a Maclaurin series, where in the ground state case the lowest order term is 

quadratic, i.e. ∆E(F) = E(F) – E(0) = – αF
2
/2! – γF

4
/4! – … The first two coefficients α and γ 

are known as the dipole polarizability and the second dipole hyper-polarizability, respectively. 

For the hydrogen negative ion these values are α = 206 and γ = 8.03·10
7
 (Radzig and Smirnov, 

1985, Pipin and Bishop, 1992). Therefore, for weak fields the energy of the outer electron of H
–
 

in the lowest state is determined approximately by the fourth-order formula 
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In theoretical studies it is convenient to treat the energies and widths of resonant states 

simultaneously using the scattering matrix formalism which deals with complex energies. 

Within this formalism a resonant state is an eigensolution of the Schrödinger equation that is 

not square integrable (it asymptotically behaves as a purely outgoing wave) and corresponds to 

a complex eigenenergy Eres. This energy is related to a pole of the scattering matrix and its real 

and imaginary parts determine the energy (position) and the width of the resonance, E = 

Re(Eres) and Γ = –2Im(Eres).  

2.1. The zero-range potential 

The simplest short-range potential that can be used to describe the dynamics of a 

weakly bound electron in negative ions is the zero-range potential (ZRP, see e.g. Demkov 

and Ostrovskii, 1988) 

 0),()(  ararV  . (3) 

This potential supports only one bound state with the binding energy EB = a
2
/2. The 

corresponding wave function has the form ψ = (κ/2π)
1/2

exp(–κr)/r, where κ = (2EB)
1/2

 = a. In the 

case of H
–
 it is a = 0.2354. 
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The eigenvalue problem of the single-electron Hamiltonian (1) with the ZRP admits 

for weak fields a solution in a closed analytical form. The position and width of the lowest 

energy level are determined from the real and imaginary parts of the associated complex 

eigenenergy (Demkov and Drukarev, 1964, Demkov and Ostrovskii, 1988) 
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where c = 1/2. The polarizability of H
–
 resulting from Eq. (4), α = 9/(8EB

2
) ≈ 81.5, is much 

lower than the experimental value or that obtained from ab initio calculations using the full two-

electron description (Milošević and Simonović, 2016). On the other hand, the formula (5) for 

the width (detachment rate) agrees approximately with the ab initio calculations that give c ≈ 

0.6. Here we note that both the polarizability and the decay rate (for weak fields) given by the 

ZRP approximation are minimal among all systems with potentials V(r) < 0 at a fixed value of 

the binding energy EB (Demkov and Ostrovskii, 1988).  

2.2. Polarization potentials 

More realistic single-electron models for H
–
 can be constructed by including the 

polarizability of the atomic residue. In such a model the loosely bound electron moves in an 

effective potential that is the sum of a short-range potential and the polarization term which 

asymptotically behaves as 1/r
4
. The parameters of the effective potential must be tuned to 

provide the correct value of the binding energy EB. An alternative is the model-potential 

consisting of a single term which provides both the correct binding energy and the correct 

asymptotics. Several model-potentials of these two types, used by different authors, are given in 

a short overview by Grujić and Simonović (1998).  

One of the most widely used model-potentials of the first type is that proposed by Cohen 

and Fiorentini (1986) 
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where αH = 9/2 is the polarizability of the hydrogen atom. The exponential factor in the 

polarization term removes the unphysical singularity of this term as r → 0. The parameter 

r0 = 1.6 is chosen by the condition that the potential (6) has a single bound state with the 

correct binding energy. 

Another, more approximate but simpler model-potential which belongs to the second-

type is the so-called Buckingham polarization potential (Buckingham, 1938, see also 

Mittleman and Watson, 1960, Grujić and Simonović, 1998)  
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For d = 1.033906 this potential has a single bound state with the correct value of binding 

energy for H
–
. 
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An external (quasi)static field distorts the potential of atomic residue forming a 

potential barrier (Stark saddle), the saddle point of which is located at the z (field) axis. 

Its position rsp = (0, 0, zsp) and hight Vsp = Vtot(rsp; F) depend on the field strength F and 

can be determined from the rule (∂Vtot/∂z)x=y=0 = 0. The field strength FS that separates the 

tunneling and OBD regimes is defined by the condition ε(FS) = Vsp(FS). Note that these 

values may vary by changing the model-potential V(r). (Note that in the case of ZRP one 

has zsp = Vsp = 0 for any field strength and OBD never occurs.) Using the dependence ε(F) 

determined by solving the eigenvalue problem of Hamiltonian (1) for the potentials (6) 

and (7) numerically (see Table 1) we obtain FS = 0.0055 a.u. (in both cases) that 

corresponds to the laser field intensity of about 10
12

 W/cm
2
. 

 

Fig. 1 (a) The x = y = 0 cut of the Cohen-Fiorentini (full line) and Buckingham (dashed 

line) potential. (b) The cut of the total potential Vtot = V(r) – Fz for F = 0.004 a.u. 

The horizontal lines mark the positions of the lowest energy level ε. 

3. NUMERICAL METHOD 

For a given model-potential V(r) and the field strength the energy and width of the lowest 

state of H
–
 in electric field can be determined numerically by the use of the complex rotation 

method (see e.g. Reinhardt, 1976, Buchleitner, et al. 1994). The basic idea of this method is 

to make the resonance wave function ψ(r) square integrable by a complex rotation of the 

coordinate, ψ(r) → ψθ(r) = ψ(e
iθ 

r), where θ is a real parameter called the ‘rotation angle’. 

Such a ‘rotated’ state ψθ(r) is an eigenfunction of the so-called complex rotated Hamiltonian 

Hθ, obtained from the original Hamiltonian H by the transformations r → e
iθ 

r, p → e
−iθ 

p. 

Hθ is a non-Hermitian operator, whose spectrum is in general complex, depends on the 

rotation angle θ and has the following properties: (i) The bound (discrete) spectra of Hθ and 

H coincide; (ii) The continua are rotated by the angle 2θ into the lower complex energy half-

plane; (iii) The resonances of H coincide with the complex eigenvalues of Hθ. 

The spectrum of Hamiltonian (1), therefore, can be computed by diagonalizing the 

corresponding rotated Hamiltonian 

 FzereVeH iii 
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2 p , (8) 
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with a properly tuned parameter θ in a square-integrable basis which must be complete in 

a sense that it covers the continuous part of the spectrum, too. For this purpose, we choose 

the Sturmian basis (see e.g. Avery and Avery, 2006) 
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where L denotes the generalized Laguerre polynomials. The functions (9), the so-called 

Coulomb Sturmians, are solutions of the equation 0)()/2( )(22  r
k

nlmrnkk   and 

obey the potential-weighted orthonormality relation 
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Although the main purpose of this basis is to study the systems with dominant 

Coulomb interaction, we demonstrated that it can be used in the problems with short-range 

potentials, too. Here it is particularly convenient that the matrix elements of the rotated 

Hamiltonian (8) in this basis, using either the potential (6) or (7), can be expressed in 

analytical forms. The Buckingham potential (7) essentially has the same form as the dipole 

term in the Bardsley pseudopotential used recently to study alkali-metal atoms in electric 

field (Milošević and Simonović, 2015). Thus, for the H
–
 model with the model-potential (7) 

all required matrix elements can be found in Appendices A and B in this reference.  

 

Fig. 2 Complex trajectories showing the evolution of complex energy of the lowest 

eigenstate of rotated Hamiltonian (8) (with the Cohen-Fiorentini potential) for  

F = 0.004 a.u. by varying the rotation angle θ (with a constant step) for a fixed 

value of the parameter k. Diagonalization of Hamiltonian (8) is performed in the 

Sturmian basis with nmax = 12. The arrows are directed towards the growth of 

angle θ. The position of the true value of complex eigenenergy (in this case  

Eres = –0.5289 – i0.546·10
–3

) is located in a close vicinity of the stationary points 

(which can be identified by the maximum density of points) of complex trajectories. 
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It should be mentioned that, due to non-orthogonality of the functions (9), the 

Schrödinger equation (Hθ – Eres) ψθ = 0 represented in the Sturmian basis reduces to the 

generalized eigenvalue problem of the form (H – EresS) x = 0. The matrices H and S are 

given by the matrix elements kmlnHknlm ;||; 
  and kmlnknlm ;|;  , respectively 

(see Appendices A and B in Milošević and Simonović, 2015), whereas the components of 

the eigenvectors x are |;knlm . Convergence of the results was assured by optimizing 

the Sturmian parameter k and the rotation angle θ. For a large basis (few tens of states (9)) 

the resonances only weakly depend on the rotation angle θ. Here, with k ~ 1, θ takes the values 

between 0 and 1 rad (depending on the field strength). When the parameters are adequately 

adjusted the computed resonance energies are approximately stationary with respect to 

variations of these parameters (see Fig. 2). 

4. RESULTS AND CONCLUSIONS 

The lowest-state energies E(F) = ε(F) – 0.5 a.u. and widths Γ(F) (detachment rates w(F)) 

at different strengths of the applied electric field F, obtained using the single-electron 

approach with the Cohen-Fiorentini and the Buckingham polarization potential (Eqs. (6) and 

(7), respectively), are shown in Table 1 and Fig. 3 together with the results of ab initio 

calculations determined using the full two-electron description (Milošević and Simonović, 

2016). The results obtained by applying the polarization potentials are very close to each 

other for all field strengths. In addition, at weak fields (approximately for F < FS/2) the 

corresponding values for energies E(F) agree well with the result of ab initio calculations, as 

well as with those estimated from the Stark shift expansion (2) (see Fig. 3(a)). At stronger 

fields, however, the difference between the results obtained using the single- and two-

electron models increases. In the OBD area (F > FS) the Stark shift ∆E determined numerically 

using the full two-electron approach is about two times larger than that obtained from the 

single-electron models. 

The detachment rates obtained using the polarization potentials (6) and (7), as well as the 

ZRP, agree well with the results of ab initio calculations at weak fields (F < FS/2, see Fig. 

3(b)). One can see that the rates generally agree mutually better than the energies. This can 

be explained by the fact that the form of total potential Vtot is less sensitive to the form of the 

model-potential V in the barrier area than in the atomic area. The numerical results for rates 

obtained using the models (6) and (7), as well as the results of ab initio calculations, fit 

approximately to the form (5) determined using the ZRP model, but for different values of 

the constant c (for the ZRP model it is c = 0.5). In order to estimate this constant from 

numerical data we expressed the rate w in terms of the variable ξ = (F/κ) exp(-2κ
3
/3F). Then 

Eq. (5) reduces to the linear dependence w = cξ. The linear fit for the results of ab initio 

calculations gives c ≈ 0.62 in the tunneling domain and c ≈ 0.58 in OBD area (Milošević and 

Simonović, 2016). As mentioned above, the results obtained using the single-electron 

models (6) and (7) are at weak fields (F < FS/2) close to the results of ab initio calculations 

(see the inset in Fig. 1(b)). (Note that in this area the ZRP values are indeed the minimal.) At 

stronger fields, however, these results are closer to the values given by the ZRP model. 
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Fig. 3 (a) The lowest state energy E and (b) width Γ (the electron detachment rate w)  

as functions of the electric field strength F. The open and gray circles denote the 

results obtained numerically using the single-electron models with the Buckingham 

and the Cohen-Fiorentini potential, respectively. The dashed and full lines in part 

(a) show the lowest state energy E(F) estimated using the second and the fourth 

order Stark shift expansion formula, respectively. The full lines in part (b) show 

the rate w(F) given by the ZRP model (Eq. (5)). For comparison, the corresponding 

results obtained using the full two-electron description (Milošević and Simonović, 

2016) are shown (+ symbols). The inset shows the same rates as functions of the 

variable ξ (see text). 

 

In conclusion, the single-electron description of the strong-field electron detachment 

of hydrogen negative ion using polarization short-range model-potentials is applicable for 

the field strengths F < FS/2 that correspond to the laser field intensities up to 0.2-0.3 

TW/cm
2
. Consequently, these models can be used for studying multiphoton processes or 
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the electron detachment via tunneling at these field strengths, but fail in over-the-barrier 

regime. In addition, the single-electron approach using the ZRP model gives approximately 

good values for the detachment rates, however it fails for energies. Finally, in order to get 

accurate results at stronger fields (F > FS/2) the full two-electron approach is necessary. 

Table 1 The lowest state energy E and width Γ of the hydrogen negative ion at different 

strengths of the applied electric field F obtained using the single-electron picture 

with the Cohen-Fiorentini (6) and the Buckingham potential (7). For comparison, 

the results obtained using the full two-electron model are shown (Milošević and 

Simonović, 2016). 

 Cohen-Fiorentini potential Buckingham potential Two-electron model 

F E Γ E Γ E Γ 

0 –0.52775 0 –0.52770 0 –0.52763 0 

0.001 –0.52782 – –0.52777 – –0.52773 – 

0.002 –0.52806 7.330E–5 –0.52802 7.312E–5 –0.52814 – 

0.003 –0.52846 4.511E–4 –0.52840 4.301E–4 –0.52867 4.310E–4 

0.004 –0.52887 1.091E–3 –0.52882 1.040E–3 –0.52928 1.247E–3 

0.005 –0.52931 1.913E–3 –0.52924 1.885E–3 –0.52997 2.475E–3 

0.006 –0.52974 2.933E–3 –0.52967 2.860E–3 –0.53057 3.845E–3 

0.007 –0.53014 4.122E–3 –0.53004 3.968E–3 –0.53118 5.369E–3 

0.008 –0.53053 5.335E–3 –0.53040 5.151E–3 –0.53177 7.022E–3 

0.009 –0.53088 7.034E–3 –0.53074 6.430E–3 –0.53236 8.789E–3 

0.010 –0.53121 8.440E–3 –0.53107 7.752E–3 –0.53293 0.01066 

0.011 –0.53153 9.872E–3 –0.53137 9.095E–3 –0.53347 0.01258 

0.012 –0.53182 0.01132 –0.53166 0.01049 –0.53397 0.01451 

0.013 –0.53214 0.01284 –0.53192 0.01191 –0.53451 0.01654 

0.014 –0.53240 0.01443 –0.53219 0.01337 –0.53503 0.01861 

0.015 –0.53265 0.01595 –0.53243 0.01484 –0.53559 0.02078 

0.016 –0.53289 0.01750 –0.53266 0.01634 –0.53609 0.02291 

0.017 –0.53313 0.01894 –0.53289 0.01785 –0.53660 0.02505 

0.018 –0.53336 0.02065 –0.53311 0.01937 –0.53708 0.02730 

0.019 –0.53360 0.02227 –0.53332 0.02090 –0.53762 0.02956 

0.020 –0.53376 0.02394 –0.53352 0.02244 –0.53817 0.03186 

0.021 –0.53399 0.02562 –0.53371 0.02399 –0.53864 0.03414 

0.022 –0.53422 0.02720 –0.53390 0.02556 –0.53915 0.03647 

0.023 –0.53441 0.02883 –0.53408 0.02712 –0.53965 0.03883 

0.024 –0.53454 0.03066 –0.53426 0.02870 –0.54016 0.04122 

0.025 –0.53473 0.03229 –0.53443 0.03028 –0.54071 0.04362 

0.026 –0.53492 0.03395 –0.53460 0.03187 –0.54120 0.04606 

0.027 –0.53512 0.03563 –0.53476 0.03346 –0.54170 0.04848 

0.028 –0.53525 0.03733 –0.53492 0.03506 –0.54222 0.05097 

0.029 –0.53538 0.03900 –0.53507 0.03667 –0.54274 0.05349 

0.030 –0.53556 0.04062 –0.53522 0.03827 –0.54320 0.05599 
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JEDNOELEKTRONSKI OPIS OTKIDANJA ELEKTRONA 

OD NEGATIVNOG VODONIKOVOG JONA U JAKIM POLJIMA 

Ispitivana je primenljivost jednelektronskog modela u opisu otkidanja elektrona od negativnog jona 

vodonika u jakim (statičkim ili laserskim) poljima. Poređenjem vrednosti za energije najnižeg stanja i 

stope otkidanja dobijenih pomoću dva različita kratkodometna model-potencijala sa rezultatima 

nedavnih ab initio izračunavanja koristeći puni dvoelektronski opis (Milošević i Simonović, 2016) 

utvrđeno je da je jedinoelektronski opis primenljiv u oblasti intenziteta do nekoliko stotina GW/cm2. 

Ovakav opis se, prema tome, može koristiti kod proučavanja multi-fotonskih procesa ili otkidanja 

elektrona tuneliranjem pri ovim vrednostima polja, ali ne i u prekobarijernom režimu. 

Ključne reči: negativni vodonikov jon, elektronsko otkidanje, jako polje, kratkodometni potencijal 


