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Abstract. The idea of protein ultrametricity proposed nearly 35 years ago per-

taining to CO binding by myoglobin is still questionable. In this overview, the

contradicting attempts to describe the CO-rebinding kinetics in the framework

of familiar approaches are discussed together with the ultrametric description.

The overview is extended by new angle devoted to designing synthetic molecular

machines using hierarchy and self-similarity as the design principles.
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1. Introduction

Ultrametrics was first applied as a physical concept to statistical theory of spin
glasses ([20], [22]). It is believed that the ground state of a spin-glass system is
reached via the tree-like splitting of a phase space into hierarchically embedded
basins of states. The branching points on the tree determine dissimilarities of the
basins, so the metrics on the state space obey the strong triangle inequality, i.e.,
the state space is an ultrametric space.

Shortly thereafter, a similar idea was voiced with respect to proteins ([1],[13]).
As applied to proteins, ultrametrics presumes that the local minima of the protein-
energy landscape are clustered into hierarchically embedded basins of minima: Each
large basin consists of smaller basins, each of these basins consists of even smaller
ones, and so on. It is assumed that the energy barriers separating the basins are
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arranged in such a way that the equilibration within any basin is attained for a much
shorter period of time than the time necessary to leave the basin. When there is
a hierarchy of barriers separating the basins, only the highest barrier between any
given two states specifies the transition. As a result, the kinetic distances between
the states measured by the transition times obey the strong triangle inequality, i.e.,
the protein states associated with local energy minima on the energy landscape
form an ultrametric space.

Despite the fact that ultrametrics appeared in spin glasses and proteins almost
simultaneously, proteins are very far from disordered systems based on their ability
to execute exact operations with individual atoms or molecules. Protein function-
ality has long been a clash of two mutually excluding interpretations: A historical
primer view refers to biochemical catalysis and a more contemporary paradigm of
molecular machines (see, for example, [11]). Under the primer view, proteins re-
duce the activation barrier and catalyze the reaction. According to this viewpoint,
a catalytic center (the protein active site) is in the focus, and the majority part
of a protein molecule surrounding the active site is considered to be a rigid ma-
trix that ensures selective binding via key-lock complementarity. In short, very
specific tertiary (spatial) structures of proteins ordained by the primary structures
are the most important for protein functioning. Therefore, the primer view reflects
above all the central dogma of biology widely referred as the idea that the genotype
determines the phenotype.

The paradigm of molecular machines presents an opposing viewpoint. Now, pro-
tein dynamics play a key role. It is believed that specific excitations of the active
site by chemical binding, charge transfer, etc., launch the multi-scale rearrange-
ments of a protein during which the excitations are transferred from fast degrees of
freedom to the slowest quasi-mechanical motion of particular fragments performing
the protein function. It is this feature that imparts protein functioning upon the
character of a machine action. In this view, protein conformational dynamics are
of upmost importance.

Although it has long been proven that the catalytic interpretation leads to phys-
ically senseless estimations of the activation energy and entropy of the most bio-
chemical reactions [11], the interpretation still survives.This survival is due not so
much to the fact that a rather-simple idea is difficult to discard, but rather due to
the lack of a description of protein dynamics acceptable over a wide range of time
scales. Actually, the problem is easy to see from its formal statement. In general, if
the energy landscape, Φ(r) , is somehow specified on the states, {r} , of a system
(r ∈ RN , where N is the number of degrees of freedom of the system), one can
study the dynamics on the manifold Φ(r) using analytical, numerical, or computer
simulation methods. There have been a variety of studies devoted to even rela-
tively complicated molecular structures (see, for example, [9] and [25]). However,
proteins are overly complicated for reconstructing entire functional cycles in such
a way. Computer simulations provide either a highly resolved picture of protein
dynamics in relatively small areas of conformational space or a coarse-grain image
of the movements of large protein fragments. It seems impossible to reconstruct in
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detail the entire process of transmission of local excitations at an active site into
the directed quasi-mechanical movements of large structural fragments. Analytical
modeling is a challenging problem here.

In any case, one needs to make some simplifications in order to describe the
multi-scale protein dynamics. In this respect, it seems that ultrametric random
processes, which are inherently multi-scale, open up new perspectives in justification
of the molecular machine concept. This idea is summarized in Section 2. in which we
demonstrate considerable progress in the ultrametric description of the CO-binding
to myoglobin. On the other hand, advances in ultrametric modeling of protein
dynamics provoke a new angle for designing synthetic molecular machines based
on hierarchy and self-similarity as the design principles. Section 3. presents recent
simulations supporting this idea.

2. Protein ultrametricity and CO-binding by myoglobin

2.1. Experiments

The studies of CO-binding by myoglobin ([1], [13], [23]) occupy a special place
among attempts to clarify how protein dynamics control protein function. The
experiments of these authors were rather simple. At given temperature,T , a sample
with myoglobin initially bound to CO was irradiated by a laser pulse. In doing so,
one breaks a chemical bond with CO in a part of the myoglobin molecules in the
sample. Immediately after, the CO-rebinding kinetics were monitored, specifically
the relative concentration,n(t, T ) , of the myoglobin molecules still unbound at
an instant t . These data were measured over the short time-scale resolution of
approximately 10−7 s up to long time scales of approximately tens of seconds and
more. The temperature range was also very wide and varied from room temperature
to deeply frozen samples at 60K and even below.

Qualitatively, the overall kinetic picture looks as follows (for kinetic data, see
[1] and [23]). First, there was a high-temperature range (300 ÷ 200K) and a low-
temperature range (190 ÷ 60K) over which the rebinding kinetics differed signifi-
cantly. The kinetic curves at high temperatures have two characteristic segments:
One relates to power-law decay on intermediate time scales, and one relates to ex-
ponential decay on final time scales. As the temperature decreases, the power-law
decay extends to a larger and larger part of the time window and covers the entire
window at the bottom of the high-temperature range at approximately 200 K. The
binding rate increases on intermediate time scales and decreases on long time scales.
In other words, on long times CO-rebinding exhibits ordinary first-order chemical
kinetics; on the intermediate time scales the same reaction is anomalous with re-
spect to both the kinetics and the temperature behavior. In the low-temperature
range (19060 K), the picture is not so enigmatic. The rebinding kinetics are non-
exponential and ordinarily depend on the temperature, i.e., the reaction rate de-
creases with decreasing temperature.
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In fact, not all of the kinetic features noted above correspond with the protein
dynamics. When temperatures are sufficiently high, CO molecules after laser pulse
may either remain inside the protein or leave the protein [23]. In the last case, the
slow penetration of CO molecules through the globule to the binding site limits
the rebinding rate, and the kinetics are exponential. In contrast, the rebinding of
those CO molecules that remain inside the protein is regulated by protein dynamics.
Therefore, at high temperatures only the power-law segments of the kinetic curves
are of interest. At low temperatures, an exit channel is closed so all of the CO
molecules remain inside the proteins. At low temperatures, the kinetics are of
interest over the entire time window.

In summary, when considering only the rebinding that is regulated by protein
dynamics, the rebinding kinetics are always non-exponential. However, the reac-
tion rate anomalously depends on temperature in the high-temperature range and
normally depends on temperature in the low-temperature range.

Quantitatively, it turns out that a power-law decay of the form

n(t, T ) ≈

(

t

τ

)−
(

1− T

T0

)

(1)

describes the kinetics well in the high-temperatures regime at t ≫ τ0, 200 < T <
T0 ≈ 300K [23]; the power-law decay of the form

n(t, T ) ≈

(

t

τ1/2(T )

)− T

T0

(2)

describes the kinetics well in the low-temperature regime at t > τ1/2(T ),T < 180K
([27]). In the equations listed above, T0, and τ are scaling parameters, respectively,
and τ1/2(T ) is the half-life time of unbound proteins.

2.2. Interpretations

An initial interpretation of the CO-rebinding kinetics was suggested by the au-
thors of the experiments [1], [13], and [23] in spirit of the catalytic concept. They
stated that the proteins in a sample are frozen in individual conformational sub-
states so the kinetics are non-exponential due to slightly different activation barriers.
According to this viewpoint, a multi-mode kinetic model was proposed in the form:

n(t, T ) =

∫

g(H) exp {−k(H,T )}dH, (3)

where g(H) is the distribution of activation barriers H , and k(H,T ) is the binding
rate constant. The authors of the experiment believed that frozen proteins were
much closer to the glass-like systems than to the native proteins. Such a seemingly
natural interpretation, however, led to difficulties; to obtain the power-law decays
(1) and (2), the authors were forced to admit very specific distributions of activation
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barriers incompatible at high temperatures and low temperatures that inexplicably
varied with temperature and time [23].

Together with all this, they surprisingly declared that the rebinding kinetics
suggest the ultrametricity of the protein conformational substates in the sense of a
hierarchy of basins of local minima on the protein-energy landscape [13]. As a result,
the idea of protein ultrametricity has been ambiguous from the very beginning. In
contrast to the ultrametricity of glasses, the authors declared this idea without
arguments how exactly ultrametricity relates to the rebinding kinetics; moreover,
they insisted that the interpretation of the experiments had nothing to do with
ultrametricity.

Slightly later, an opposite interpretation of CO binding in the spirit of the
molecular machine concept was proposed in [26]. The authors of this interpreta-
tion argued that precisely at low temperatures, i.e., exactly where the assumption
about frozen conformations looks more believable, just the protein dynamics limit
the rebinding kinetics. According to this interpretation, the following model was
proposed:

n(t) =

〈

exp

{

−

∫ t

0

k(x(t′))dt′
}〉

, (4)

where k(x(t)) is the binding rate constant controlled by the protein dynamics pre-
sented by a random process x(t) ≥ 0 and 〈·〉 is the average over the trajectories x(t).
The control was specified as follows: k(x(t)) = k0 if 0 ≤ x(t) ≤ 1, and k(x(t)) = 0
otherwise, i.e., myoglobin can bind CO only when the protein gets into a specific
set of conformational substates given by the interval [0, 1].

Note that the model (4) also has nothing to do with ultrametricity. However, in
contrast to the primer interpretation (3), it implies a particular relationship between
the binding kinetics and the protein dynamics. Despite the fact that there is no
explicit form of such a relationship in the model (4), the authors [26] attempted
to specify the characteristics of the process x(t) that would be compatible with
the observable kinetic features. They argued that the process x(t) was relevant
to the established low-temperature kinetics (2) if the mean number, m(t, T ), of
getting into the interval [0, 1] increases with time as m(t, T ) ∼ tT/T0 . It is easy
to see, however, that in this case the model (4) directly contradicts the anomalous
temperature dependence at high temperatures. In other words, if the model (4)
correctly describes the rebinding kinetics at low temperatures, it does not work at
high temperatures, and vice versa.

In summary, a contradictory situation arose around the interpretations of the
CO rebinding experiments. On the one hand, it remained unclear whether the pro-
tein structure or the protein dynamics were more important for protein functioning.
On the other hand, it appeared that the native proteins and frozen proteins phys-
ically differed so much that it was hardly possible to expect the same behavior at
high and low temperatures. In terms of protein ultrametricity, this idea was ac-
tually not discussed. Moreover, the belief spread that the CO-rebinding kinetics
permitted different interpretations having nothing to do with ultrametricity. In
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fact, a consistent picture of the CO rebinding kinetics at all temperatures can be
constructed based namely on protein ultrametricity.

2.3. Ultrametric models

In general, the ultrametric description of CO rebinding has been developed in a
series of works based on the interpretation (4) (for the original studies, see [3], [4],
and [5]; for a recent review, see [6]). The only difference is that the protein states
are described by an ultrametric space. As a result, the ultrametric diffusion models
the protein dynamics.

Let us start with a scheme of the CO rebinding: Mb-CO→Mb*→ . . . →Mb1+
CO→Mb-CO. In the scheme, Mb* denotes a set of states in which myoglobin
molecules turn out immediately after breaking the chemical bonds with CO; Mb1

denotes a set of states to which unbound proteins relax and in which they rebind
CO. The quantity measured in the experiments is a fraction n(t, T ) of proteins re-
mained unbound in a sample at a temperature T at an instant t . Note that the
measured quantity n(t, T ) takes into account the proteins found in any conforma-
tional substates [Mb* → . . . → Mb1] ranging from the initial states Mb* up to the
final states Mb1. In the ultrametric description, an ultrametric ball Br ⊂ Qp of
sufficiently large radius pr, (r ≫ 1) describes all of these states, and an ultrametric
ball Zp ⊂ Br with a unit radius represents the chemically active states Mb1 . In
these terms, the initial states Mb* are distributed on a compact support M ⊂ Br,
M ∩ Zp = ∅ .

According to the main idea, the following p-adic equation of the reaction-diffusion
type describes the CO binding

∂f(x, t)

∂t
=

∫

Br

w(x|y) [f(y, t)− f(x, t)] dpy − λΩ(|x|p)f(x, t), (5)

where f(x, t) is the transition probability density of ultrametric diffusion, dpx is the
integration measure on the field of p-adic numbers, Qp , λ is the binding constant,
and Ω(|x|p) specifies the binding area (Ω(|x|p) = 1 if |x|p ≤ 1 , and Ω(|x|p) = 0
otherwise). The physical meaning of (5) is rather simple: an unbound protein
diffuses over an ultrametric space of states, Br, and binds CO only when the protein
gets to the binding area, Zp . The measured quantity in model (5) is n(t) =
∫

Br

f(x, t)dpx.

The novelty of the ultrametric model (5) consists of the fact that it introduces
a direct relationship between the protein ultrametric dynamics and the rebinding
kinetics. Specifically, the transition rates, w(x|y) , in (5) depend on the ultrametric

distances |x − y|p as w(x|y) = |x − y|
−(α+1)
p , where α ∼ T−1. Such a form of

transition rates explicitly assumes that the activation barriers separating the basins
of local minima grow linearly with hierarchy level.

We note that the initial distribution may also be important for the kinetic dif-
ferences at high and low temperatures. Indeed, the high-temperature kinetics (1)
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may be related to a long-time asymptotic of the solution of (5), and the initial dis-
tribution shape is insignificant for such estimations. However, the low-temperature
kinetics (2) may relate to the intermediate behavior of the same solution of (5),
and for intermediate kinetics the initial distribution shape may be important. One
can accordingly note that the breaking of a chemical bond at the binding site does
not change noticeably the protein-energy landscape. Therefore, keeping the con-
sideration (5) self-consistent, one can suggest that an initial distribution f(x, 0) be
generated via ultrametric diffusion itself. Specifically, the initial distribution can be
defined as follows:

f(x, 0) = N

γmax
∑

γ=γmin+1

Ω(|x|p = pγ)p−c|γ−m|p−γ , (6)

were N is the normalization coefficient. The initial distribution (7) has descending
wings whose shapes are typical of an ultrametric diffusion distribution (see, for
example, [3], [4]) with the maximum at the p-adic distance pm from the binding
area Zp. Figure 1 shows the kinetic curves n(t) calculated numerically for the
model (5) with the initial conditions given in (6) (for the analytical solutions of
p-adic equations of the reaction-diffusion type, see [10]). One can see that both
the high-temperature kinetics (α < 2) and the low-temperature kinetics (α ≥ 2)
correspond to the power-law decays (1) and (2).

Figure 2 clearly shows that the anomalous temperature dependence changes
to a normal temperature dependence as the temperature decreases. Notice that
a single parameter α ∼ T−1 parameterizes the change. It is interesting to note
that the temperature dependence of the reaction rate changes to an opposite sense
over a narrow range of temperatures (close to α = 2 ). Such critical behavior is
entirely consistent with the fact that myoglobin experiences the glassy transition
resulting in a sharp decrease in protein-fluctuation mobility exactly at the border
of high-temperature and low-temperature ranges.

In addition, it should be emphasize that the very specific features of spectral dif-
fusion in deeply frozen proteins are described based exactly on the same ultrametric
description of protein dynamics [2]. It is certainly a surprise that the protein dy-
namics demonstrate the universality over an extremely wide range of temperatures
ranging from room temperature up to deeply frozen states.

2.4. Comments

As far as the barriers separating the basins specify the transition rates, the func-
tion w(|x − y|p) represents the protein-energy landscape. The transition function

in the form w(|x − y|p) = |x − y|
−(α+1)
p corresponds to the energy landscape with

self-similar hierarchy of basins and barriers. Therefore, the ultrametric model (5)
unambiguously assumes the self-similarity of the protein-energy landscape. The an-
alytical arguments supporting this choice are outlined in [5]. It seems that there are
profound physical reasons behind this fact: The self-similarity of the protein-energy
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Figure 1: Kinetic curves n(t) calculated following the ultrametric model (5)–(7)
for the parameters τ = 10−7 s, p = 2, r = 20, γmin = 5, γmax = 15, m = 10,
λ = 10; the values of α are shown above the curves. The high-temperature regime
corresponds to the values α = 0.5 ÷ 1.5 (solid lines). The low-temperature regime
corresponds to the values α = 2.0÷ 3.5 (dashed lines).

landscape underlies protein functionally over a wide range of temperatures. This
finding implies that, when studying frozen proteins, even at cryogenic temperatures,
one can obtain information relevant to native proteins. The wide-spread belief that
the dynamics of deeply frozen proteins have nothing to do with the dynamics of
native proteins is accordingly misguided. Furthermore, hierarchy and self-similarity
may turn out to be guiding principles in the designing of macromolecular structures
equipped with molecular machine functionality. The next section presents this idea.
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Figure 2: Dependence of the power– law exponent k(α). The solid and dashed
curves relate to the expressions (1) and (2), respectively, and the dotted curve
relates to the ultrametric model (5)–(7).

3. Ultrametric concept of designing molecular machines

Molecular machines are commonly attributed to complex macromolecular struc-
tures able to convert the perturbations of fast degrees of freedom into slow quasi-
mechanical motion along a low-dimensional path. They operate accurately with
individual atoms and molecules, they carry out assembling and disassembling of
biopolymers, they move sub-cellular units along particular tracks in a cell, etc. Is it
possible to design similarly operating synthetic macromolecules? This challenging
question addresses the exiting prospects of algorithmic chemistry and waste-free
technologies. Beyond chemistry, the question pertains to the core problem of the
origin of life consisting of the fact that even the simplest version of biological re-
production based on translation and transcription remains hopelessly complex for
its random appearance in abiogenic conditions ([12], [16], [7], [17], [19], [21]). In
fact, to produce biological macromolecules, it is necessary to have the molecular
machines able to accurately assemble at the atomic level. However, it is still un-
clear whether molecular machines may exist in abiogenic conditions, and what the
primary machine would be. To make progress in resolving these problems, we com-
bine two ideas. One idea follows protein ultrametricity and suggests that hierarchy
and self-similarity are the basis of molecular machine design. Another idea requires
the conditions natural for a lifeless environment for forming the target structure.
Together, these ideas are focused on so-called crumpled polymer globules.

3.1. Crumpled globules

It is well known that, at high temperatures (in a good solvent), a polymer of
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N units is a strongly fluctuating coil without a well-defined thermodynamic state.
However, at temperatures below the critical value θ (in a poor solvent), a polymer
chain collapses into a weekly fluctuating drop-like globule of size Rgl ∼ N1/3 (see,
for example, [14]). An ordinary globule formed from a knotted chain with free
ends all being subchains of length s ≤ N2/3 resembles mutually entangled Gaussian
coils. For unknotted polymer rings, however, the globular structure is different [15].
Topological constraints inherent to a polymer ring result into so-called crumpled
globule. The following imaginative hierarchical process elucidates the formation of
a crumpled globule. Below the θ-point, there exists a relatively short length, g∗ ,
such that the subchains of the order of g∗ first collapse and form the crumpled units
in a globular phase. Next, several crumpled units collapse and form the first-level
folds; these folds then form the second-level folds, etc. This process continues up
until the formation of the largest fold from the entire chain (see Figure 3a).

This recursive collapse functions mainly to illustrate the formation of hierarchi-
cally folded chains resembling weakly entangled globules on all scales s > g∗. Note
that hierarchical collapse imposes constraints on chain entanglement on all scales.

3.2. Ultrametric description of a hierarchy of folds

Any crumpled unit in a hierarchy of folds can be parameterized by a sequence
of indices specifying the set of embedded folds (e.g., to which particular first-level
fold embedded into particular second-level fold, etc.) housing each crumpled unit.
The terminal nodes (leaves) of a branching tree of folds encode the set of indices:
Each leaf is specified by a unique path from the root to the leaf (see Figure 3b).
Therefore, the tree boundary represents a space of states of the crumpled units in a
hierarchy of folds. The number of downward branches of the tree sets a number of
previous-level folds embedded into a fold of the next level. In a self-similar hierarchy
of folds, the branching index p is fixed, and all γ–level folds consist of pγ units (as
shown in Figure 3b for p = 2 ).

Now, to describe how a polymer chain is superimposed on a hierarchy of folds,
one can introduce two metrics specifying the distances between the crumple units.
One distance is a conventional distance, s , between units measured along a chain.
Another distance, d , specifies proximity of the states of units in a hierarchy of
folds. Since the states correspond to the tree boundary, the metric d obeys the
strong triangular inequality, i.e., the states of crumpled units in a hierarchy of folds
form an ultrametric space. For a regularly branching tree of folds, the ultrametric
distance d between any two units can be measured by the scale of the maximal
fold separating the units. Note that crumpled units located nearby in real space
may belong to different large fold and therefore be separated by a large ultrametric
distance d.

In these terms, a hierarchically folded chain can be interpreted as a trajectory of
a random process propagating with a polymer length s over an ultrametric space.
The transition probability, f(x, s|x0, 0), of the random process specifies the probabil-
ity of finding a unit s at the state x given the condition that the first unit of s-length
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Figure 3: Hierarchy of folds of three levels. a) Representation of folds embedded
into each other: 0 – crumpled unit, 1 – fist-level fold consisting from 2 crumpled
units, 2 – second-level fold consisting from 2 first-level folds, and 3 – third-level
fold consisting from 2 second-level folds. b) Tree-like presentation of the hierarchy
of folds: The leaves on a tree form a space of states for the crumpled units. Each
subtree of the tree corresponds to a particular fold. Each path AB on the tree from
the root A to a leaf B specifies a set of embedded folds related to a particular state
of a crumpled unit.

fragment is at the state x0 . The transition probability function f(x, s|x0, 0) mea-
sures all of the possible conformations of hierarchically folded s-length fragments
whose ends are in states x0 and x , respectively. Implying conditional probability,
we can write the transition probability f(x, s|x0, 0) in the abbreviated form f(x, s)
.

Let the transition probability obey the master equation for the random work

∂f(x, t)

∂s
=

∑

x 6=y

w(x|y)f(y, s)−
∑

x 6=y

w(y|x)f(x, s) (7)

subject to the initial condition f(x, 0) = δ(x − x0), where w(x|y) is an element of
the transition rates matrix W specifying the probability of jumping from state y to
state x via unit step along the chain. Assuming w(x|y) ∼ p−γ(x,y) , where pγ(x,y)

is the scale of a largest fold separating the states y and x, and taking into account
that the state x is chosen in the γ(x, y)-level fold randomly, one can specify the
matrix elements as w(x, y) ∼ p−2γ(x,y) .

Accordingly, the transition matrix W has a characteristic block-hierarchical
structure related to the hierarchy of folds. For a regularly branching tree of folds,
the hierarchy of blocks is also regular. In an irregular tree of folds, the scales of
folds belonging to the same level may differ. In this case, the transition matrix
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Figure 4: Block-hierarchical structure of a transition matrix ( p = 2 ) (right) for
random walk on the boundary of a regular tree of folds (left).

W will have again a block-hierarchical form, yet the matrix elements will vary in
blocks even belonging to the same level of hierarchy.

The non-zero eigenvalues of the transition matrix are of primary importance:
Each eigenvalue corresponds to a particular fold, so a fold is stable if its eigenvalue
is negative. In the case of a regular tree of folds, the eigenvalues of are well known
(see, for example, [3] and references therein:

λγ = −
p− p−1

p− 1

(

p−γ − p−(γmax+1)
)

− p−(γmax+1), (8)

where each eigenvalue λγ is degenerated p(γmax−γ) times, and γ = 1, 2, . . . , γmax

refers to the hierarchy levels. It is easy to see that all eigenvalues are negative.
Therefore, the hierarchy of folds described by the equation (7) has a well-defined
ground state.

Again, (7) implies the hierarchy of constraints, where each constraint stabilizes
the folds of a particular scale. In this sense, the conditions for the eigenvalues to
become positive with increasing temperature define the destruction of the folds.
The destruction (melting) of folds can be illustrated by introducing a temperature-
dependent repulsion between the folds, assuming that the repulsion can be described
by an auxiliary block-hierarchical matrix as follows:

∂f(x, t)

∂s
=

∑

x 6=y

w(x|y)f(y, s) − (1 + τ)
∑

x 6=y

w(y|x)f(x, s), (9)

where τ = (T−θ)
θ . Now, the eigenvalues are equal to λ

(τ)
γ = λγ + τ . The solutions

of the equations λ
(τ)
γ = 0 specify the critical temperatures θ < Tγmax

< Tγmax−1 <
. . . < T1 at which the folds are subsequently destroyed: At Tγmax

the largest fold
becomes unstable and splits into a set of (γmax−1)–level folds. These folds become
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unstable at the next critical temperature Tγmax−1 > Tγmax
and so on until the

highest critical temperature, T1 , is attained and the crumpled globule completely
melts. Note that the melting of a regular hierarchy of folds is suggested to be a
step-wise process due to well-distinguished folds; an irregular hierarchy of folds may
melt almost continuously.

3.3. Designing of hierarchically folded samples on a computer

A polymer chain consisting of N units (beads) has been modeled using a stan-
dard set of potentials accounting for rigidity and volume interactions (see, for exam-
ple, [18]). According to the ultrametric description noted above, the hierarchically
folded samples were designed using a trial attractive interaction, Uγ , of a block-
hierarchical form applied to a set M ≤ N of representative units. At the initial
stages of the chain collapse, the neighboring representative units were attracted to
each other to form the first-level folds. Then, the pairs of such folds formed the
second-level folds, and so on. In general, the attraction of two γ–level folds with
the formation of a fold of the next (γ + 1) level was possible if the two folds were
located close to one other. The spatial distance between two folds has been defined
as the smallest distance between the units included in the folds. Furthermore, any
fold can decay on sub-folds only if the upper-level fold is destroyed.

The collapse of relatively short chains with lengths of roughly 200 units has
been performed using the Metropolis algorithm in a large box with open boundary
conditions. When collapsing the chains and equilibrating the final conformations,
we studied the dynamics of hierarchically folded samples using the elastic network
technique. In an elastic network, a molecular structure is presented by a set of nodes
i = 1, . . . , M initially located in a space at particular positions and elastic links
between the nodes encoded in an adjacency matrix A with elements aij = 1 for a
link between i and j , and aij = 0 otherwise. Therefore, the nodes are subject to
elastic forces. In the overdamped limit, the velocity of each node is proportional to
the sum of the applied elastic forces; hence, the relaxation of the molecular structure
to equilibrium can be described by non-linear dynamic equations of the form:

dRi

dt
=

N
∑

i=1

aijuij

(

|Ri −Rj | − |R0
i −R0

j |
)

, (10)

where a vector Ri ≡ Ri(t) specifies a spatial position of the i-th node at an instant
t , R0

i is the equilibrium position of the i-th node, and uij = (Ri −Rj) /|Ri −Rj|
is the direction of relative displacement of the nodes i and j . For small deviations,
ri , from equilibrium, the equations (10) can be linearized (for details, see [24]):

dri
dt

= −
∑

j

Λijrj ,

where the linearization matrix Λ consists of 3 × 3 blocks, Λij , that represent the
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strain tensors. Therefore, for small perturbations, relaxation to equilibrium is de-
scribed by the sum of independent (normal) exponential modes,

r(t) =

3M
∑

k=1

rk(0) exp {−λkt}ek ,

where r(t) denotes the 3N -component deviation, and λk and ek, k = 1, 2, . . . , 3N
are the eigenvalues and the eigenvectors of the linearization matrix Λ , respectively.
A slower normal mode corresponds to a smaller eigenvalue.

The spectrum of eigenvalues is of initial interest for the characterization of molec-
ular machines. Studies of elastic networks of biological molecular machines have
revealed two specific properties [24]: i) a large spectral gap separating a few (typ-
ically, one or two) slowest (soft) relaxation modes from the rest of spectrum with
many fast (rigid) relaxation modes, and ii) a low-dimensional manifold with a large
basin of attraction on which a molecular machine performs the action. These prop-
erties have a clear physical meaning: The spectral gap indicates the possibility for
large-scale slow motion, and the low-dimensional attracting manifold implies that
the large-scale motion is reproducible given different perturbations.

3.4. Dynamics of a hierarchically folded sample

Here, we construct an elastic network using a contact map of the designed sam-
ples: Representative units are chosen to be the network nodes, and links were placed
if the space distance between the nodes did not exceed the cutoff radius equal to
three polymer units, Rcut = 3 [8]. The typical shape of a hierarchically folded sam-
ple with characteristics of molecular machines and its elastic network are shown in
Figures 5a and 5b, respectively.

The typical relaxation spectra of the sample above are shown in Figure 6a. Note
a large spectral gap separating the slowest mode, λ0 , in the spectrum (λ1/λ0 ≈
7, λ2/λ1 ≈ 1 ). The three-dimensional representation of the dynamic trajectories
obtained from numerical solutions of the complete set of non-linear equations (10)
is shown in Figure 6b. The representation is constructed with respect to particular
three nodes, two of which maximally reflect the slowest relaxation modes (for details,
see [24]).

One can see that the dynamics of a hierarchically folded chain indeed have
characteristics of molecular machines, despite the fact that the designed samples
do not have the structural motives such as α-helixes or β-sheets typical of proteins.
The hierarchically folded sample also quickly relaxes to a one-dimensional manifold
with a large attracting basin and then slowly moves on the manifold along a well-
defined path. It should be noted that the specific dynamics of molecular machines
are inherent for significantly anisotropic folds. Indeed, in the trajectories shown in

Figure 6, the fast degree of freedom (δu23/u
(0)
23 ) is rigid for approximately two more

orders of magnitude than the slowest degrees of freedom (δu12/u
(0)
12 and δu13/u

(0)
13 ).
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Figure 5: Typical sample with characteristics of the molecular machines obtained
by the collapse of a polymer chain under the action of a hierarchical potential. (a)
The shape of the hierarchically folded structure (red beads represent representative
units) and (b) The elastic network of the structure.

3.5. Concluding remarks

In this section, we have considered the overdamped dynamics of an elastic net-
work constructed using a contact map of a crumpled polymer globule formed by
relatively short polymer chains. Our results explicitly demonstrate that the dy-
namics of hierarchically folded globules are similar to those of molecular machines.
This observation highlights that crumpled globules may be candidates for designing
molecular machines from synthetic polymers. The mechanism that makes it possi-
ble to consider the hierarchically folded polymers to be generic molecular machines
deals with the sequential energy transfer through a hierarchy of folds from small
crumples to the largest crumps. This process produces deformations over scales of
the entire globule. The effect is more visible in crumpled globules with an essentially
anisotropic shape formed by few large folds.

The virtual structure noted above still does not perform any specific functions
such as those of proteins. It is only able to convert energy perturbations of fast
degrees of freedom into slow quasi-mechanical motion of large folds. This capa-
bility bears a strong resemblance to a heat-engine, and it is possible, in principle,
to consider the hierarchically folded chains to be prototypes of handmade molec-
ular machines that can be manipulated by individual molecules. Such an ability
definitely provides a new angle to an eternal problem of the origin of life related
to overcoming the error threshold in producing and selecting complex molecular
structures at prebiotic evolutionary stages (see, for example, [12]; [7]).

These results allow us to put forth a conjecture about the possibility that pri-
mary molecular machines can function as a sort of crumpled globule naturally
formed under prebiotic conditions. Such molecular machines, even if they are pro-
duced from completely different macromolecules from biopolymers, may perform
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Figure 6: (a) The spectrum of relaxation modes of the hierarchically folded globule
shown in Figure 5 and an ordinary globule. All of the non-zero eigenvalues are
normalized to the smallest eigenvalue λ0 . Note that there is no spectral gap in
the relaxation spectra of an ordinary globule. (b) The dynamic trajectories of the

hierarchically folded globule shown in Figure 5a. The axes δu12/u
(0)
12 and δu13/u

(0)
13

correspond to relative displacements along the two slowest degrees of freedom; the

axes δu23/u
(0)
23 relate to a fast degree of freedom. The inset shows the slowest mode

(δu12/u
(0)
12 ) versus a fast mode (δu23/u

(0)
23 ).

the functions typical of biopolymers. The diversity of primary molecular machines
is concerned largely with the number of slow modes manifested in the dimensionality
of the attracting manifold on which the action of a molecular machine is performed.
Typically, these manifolds are one– or two–dimensional, thereby enabling functional
variability without altering the structural archetype. The idea that hierarchically
folded globules consisting of relatively short polymer chains may be the primer
molecular machines in evolution certainly requires experimental support. However,
our results permit to consider the evolutionary scenarios in which the beginning of
biological evolution is associated with the appearance of complex functional sys-
tems of molecular machines capable of reproduction and autonomous behavior even
though the primary molecular machines are taken out of the biological context.
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ULTRAMETRIČNOST PROTEINA I PROJEKTOVANJE

SINTETIČKIH MOLEKULARNIH MAŠINA

Ideja o ultrametričnosti proteina predložena pre skoro 35 godina, koja se odnosi

na vezivanje CO mioglobinom, je još uvek pod znakom pitanja. U ovom pregled-

nom radu su diskutovani kontradiktorni pokušaji za opisivanje kinetike CO u okviru

poznatih pristupa i ultrametričkog opisa. Pregled je proširen novim uglom gledanja

na dizajniranje sintetičkih molekularnih mašina koristeći hijerarhiju i samosličnost

kao principe dizajniranja.

Ključne reči: ultrametričnost proteina, molekularne mašine, hijerarhija, samosličnost


