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Abstract. An influence of a classical magnetic field on the vacuum of the quan-

tized charged spinor matter field confined between two parallel material plates is

studied. In the case of the uniform magnetic field transverse to the plates, the

Casimir effect is shown to be repulsive, independently of a choice of boundary

conditions and of a distance between the plates.
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1. Introduction

Almost seven decades ago, Casimir [1] predicted an attraction between grounded
metal plates as a macroscopic effect of vacuum fluctuations in quantum field theory.
Since then, his prediction has been confirmed experimentally with great precision,
opening prospects for its application in modern nanotechnology, see review in [2].

The detected Casimir force (or pressure) between parallel plates separated by
distance a,

Received March 3rd, 2016; accepted May 27th, 2016.
†Acknowledgement: The work Yu.A.S. was supported by the National Academy of Sciences

of Ukraine (project No.0112U000054) and the ICTP – SEENET-MTP grant PRJ-09 “Strings and
Cosmology”. The work V.M.G. was supported by the Swiss National Science Foundation grant
SCOPE IZ 7370-152581.

∗E-mail: yusitenko@bitp.kiev.ua

319



320 YU. A. SITENKO, V. M. GORKAVENKO

FEM = − π2

240a4
, (1)

is due to the vacuum fluctuations of the quantized electromagnetic field only [1].
As to the vacuum fluctuations of other quantized fields, their contribution to the
Casimir effect was theoretically considered erstwhile, see, e.g., [2]. It suffices to note
here that this contribution is of order of a−4 at a≪λC and of order of a−4(a/λC)

ν

exp(−2a/λC) at a≫λC , where λC = m−1 is the Compton wavelength of the matter
field of mass m; the sign of this contribution, as well as exponent ν, depends on
a boundary condition and the spin of the matter field. Usually, the Casimir effect
is validated experimentally for the macroscopic separation of plates: a > 10−8m.
So, even if one takes the lightest massive particle, electron (λC = 3.86× 10−13m),
then it becomes clear that the case of a≪λC has no relation to physics reality.
Whereas, in the realistic case of a≫λC , the contribution of the vacuum fluctuations
of quantized massive matter fields to the Casimir effect is vanishing.

However, quantized massive matter fields can be charged, and as those perceive
an influence from external (classical) electromagnetic fields. We shall study an
impact of a classical magnetic field on the vacuum of the quantized massive matter
field; both the quantized and classical fields are confined to a bounded spatial region.
A crucial point for our analysis is a choice of boundary conditions, and we adhere to
the most general one. Namely, the principles of comprehensibility and mathematical
consistency require that operators of physical observables in quantum mechanics be
self-adjoint, see, e.g., [3]. To put it simply, a multiple action is well defined for a
self-adjoint operator only, allowing for the construction of functions of the operator,
such as resolvent, evolution, heat kernel and zeta-function operators, with further
implications upon second quantization.

The mathematical demand for the self-adjointness of a differential operator act-
ing on wave functions in a bounded spatial region is a somewhat more general than
the physical demand for the confinement of appropriate quantized matter fields
within this region. The concept of confined matter fields is quite familiar in the
context of condensed matter physics: collective excitations (e.g., spin waves and
phonons) exist only inside material objects and do not spread outside. Nonetheless,
a quest for boundary conditions ensuring the confinement of the quantized matter
was initiated in particle physics in the context of a model description of hadrons as
composites of quarks and gluons [4, 5]. If an hadron is an extended object occupy-
ing spatial region Ω bounded by surface ∂Ω, then the quark matter field, ψ(r), is
subject to the MIT bag boundary condition [6]:

[I + iβ(n ·α)]ψ(r)|r∈∂Ω = 0, (2)

where α1, α2, α3 and β are the generating elements of the Dirac-Clifford algebra.
However, the point is that this boundary condition is not the only one. The most
general set of boundary conditions in the case of a simply-connected boundary
involves four arbitrary parameters [7, 8], and the explicit form for this set has been
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given [9]; the set is compatible with the self-adjointness of the Dirac hamiltonian
operator, and its four parameters can be interpreted as the self-adjoint extension
parameters.

Thus, let us consider in general the quantized spinor matter field that is confined
to the three-dimensional spatial region Ω bounded by the two-dimensional surface
∂Ω. To study a response of the vacuum to the classical magnetic field, we restrict
ourselves to the case of a boundary consisting of two parallel planes; the classical
magnetic field strength is assumed to be uniform and orthogonal to the planes.
As was already explained, we start from the most general set of mathematically
acceptable (i.e. compatible with the self-adjointness) boundary conditions. Further
follow physical constraints that the spinor matter be confined within the planes and
that the spectrum of the wave number vector in the direction which is orthogonal
to the planes be unambiguously (although implicitly) determined. Employing these
mathematical and physical restrictions, we consider the generalized Casimir effect
which is due to vacuum fluctuations of the quantized spinor matter field in the
presence of the classical uniform magnetic field; the pressure from the vacuum onto
the bounding planes will be found.

2. Self-adjointness and boundary conditions

Defining a scalar product as (χ̃, χ) =
∫

Ω

d3r χ̃†χ, we get, using integration by

parts,

(χ̃,Hχ) = (H†χ̃, χ)− i

∫

∂Ω

ds · χ̃†
αχ, (3)

where

H = H† = −iα ·∇+ βm (4)

is the formal expression for the Dirac hamiltonian operator and ∇ is the covariant
derivative involving both the affine and bundle connections (natural units ~ = c = 1
are used). Operator H is Hermitian (or symmetric in mathematical parlance),

(χ̃,Hχ) = (H†χ̃, χ), (5)

if

∫

∂Ω

ds · χ̃†
αχ = 0. (6)

The latter condition can be satisfied in various ways by imposing different boundary
conditions for χ and χ̃. However, among the whole variety, there may exist a
possibility that a boundary condition for χ̃ is the same as that for χ; then the
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domain of definition of H† (set of functions χ̃) coincides with that of H (set of
functions χ), and operator H is self-adjoint. The action of a self-adjoint operator
results in functions belonging to its domain of definition only, and, therefore, a
multiple action and functions of such an operator can be consistently defined.

Condition (6) is certainly fulfilled when the integrand in (6) vanishes, i.e.

χ̃†(n · α)χ|r∈∂Ω = 0. (7)

To fulfill the latter condition, we impose the same boundary condition for χ and χ̃
in the form

χ|r∈∂Ω = Kχ|r∈∂Ω, χ̃|r∈∂Ω = Kχ̃|r∈∂Ω, (8)

where K is a matrix (element of the Dirac-Clifford algebra) which is determined by
conditions

K2 = I, K†(n · α)K = −n · α. (9)

It should be noted that, in addition to (7), the following combination of χ and χ̃ is
also vanishing at the boundary:

χ̃†(n ·α)Kχ|r∈∂Ω = χ̃†K†(n ·α)χ|r∈∂Ω = 0. (10)

Using the standard representation for the Dirac matrices, one can get matrix K in
the off-diagonal form [9]

K =
(1 + u2 − v2 − t2)β + (1− u2 + v2 + t2)I

2i(u2 − v2 − t2)
(un · α+ vβγ5 − it · α), (11)

where t = (t1, t2) is a two-dimensional vector which is tangential to the boundary,
t ·n = 0, and γ5 = iα1α2α3. Matrix K is Hermitian in two cases only when it takes
forms

K+ = −iβ(n ·α) (u = 1, v = 0, t = 0) (12)

and

K− = ivβγ5 + t ·α (u = 0, v2 + t2 = 1). (13)

Matrix K+ (12) corresponds to the choice of the standard MIT bag boundary con-
dition [6], cf. (2),

(I −K+)χ|r∈∂Ω = (I −K+)χ̃|r∈∂Ω = 0, (14)
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when relation (10) takes form

χ̃†βχ|r∈∂Ω = 0. (15)

It is instructive to go over from off-diagonal matrix K (11) to Hermitian matrix K̃,
presenting boundary condition (8) as

χ|r∈∂Ω = K̃χ|r∈∂Ω, χ̃|r∈∂Ω = K̃χ̃|r∈∂Ω, (16)

with K̃ = K̃† determined by conditions

K̃2 = I, [K̃,n · α]+ = 0. (17)

This transition is implemented with the use of the block-diagonal Hermitian matrix,
N , obeying condition

(I −N)K = K†(I −N); (18)

namely, the result is

K̃ = (I −N)K +N. (19)

Using parametrization

u = − sin ϕ̃

cosϕ cos θ + cos ϕ̃
, v =

sinϕ cos θ

cosϕ cos θ + cos ϕ̃
, (20)

t1 =
sin θ cos η

cosϕ cos θ + cos ϕ̃
, t2 =

sin θ sin η

cosϕ cos θ + cos ϕ̃
,

−π/2 < ϕ ≤ π/2, −π/2 ≤ ϕ̃ < π/2, 0 ≤ θ < π, 0 ≤ η < 2π,

one gets

K = i
β cosϕ cos θ + I cos ϕ̃

cos2 ϕ cos2 θ − cos2 ϕ̃
(21)

×[n ·α sin ϕ̃− βγ5 sinϕ cos θ + i(α1 cos η + α2 sin η) sin θ)],

where

[n · α, α1]+ = [n ·α, α2]+ = [α1, α2]+ = 0. (22)

Then matrix N takes form

N = β cosϕ cos ϕ̃ cos θ − βγ5(n ·α) sinϕ sin ϕ̃ cos θ (23)

+i(α1 cos η + α2 sin η)(n ·α) sin ϕ̃ sin θ,
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and one gets

K̃ = [βeiϕγ5

cos θ + (α1 cos η + α2 sin η) sin θ]eiϕ̃n·α; (24)

in particular,

K+ = K̃|ϕ=0, ϕ̃=−π/2, θ=0, K− = K̃|ϕ=π/2, ϕ̃=0. (25)

Thus, the explicit form of the boundary condition ensuring the self-adjointness of
operator H (4) is

{

I − [βeiϕγ5

cos θ + (α1 cos η + α2 sin η) sin θ]eiϕ̃n·α
}

χ|r∈∂Ω = 0 (26)

(the same condition is for χ̃). Four parameters of boundary condition (26), ϕ, ϕ̃, θ
and η, are interpreted as the self-adjoint extension parameters.

In the context of the Casimir effect, one usually considers spatial region Ω
with a disconnected boundary consisting of two connected components, ∂Ω =
∂Ω(+)

⋃

∂Ω(−). Choosing coordinates r = (x, y, z) in such a way that x and y
are tangential to the boundary, while z is normal to it, we identify the position
of ∂Ω(±) with, say, z = ±a/2. In general, there are 8 self-adjoint extension pa-
rameters: ϕ+, ϕ̃+, θ+ and η+ corresponding to ∂Ω(+) and ϕ−, ϕ̃−, θ− and η−
corresponding to ∂Ω(−). However, if some symmetry is present, then the number
of self-adjoint extension parameters is diminished. For instance, if the boundary
consists of two parallel planes, then the cases differing by the values of η+ or η− are
physically indistinguishable, since they are related by a rotation around a normal
to the boundary. To avoid this unphysical degeneracy, one has to fix

θ+ = θ− = 0, (27)

and there remains 4 self-adjoint extension parameters: ϕ+, ϕ̃+, ϕ− and ϕ̃−. Op-
erator H (4) acting on functions which are defined in the region bounded by two
parallel planes is self-adjoint, if the following condition holds:

{

I − β exp[i(ϕ±γ
5 ± ϕ̃±α

z)]
}

χ|z=±a/2 = 0 (28)

(the same condition holds for χ̃). The latter ensures the fulfilment of constraints

χ̃†αzχ|z=±a/2 = 0 (29)

and

χ̃†β exp
{

i[ϕ±γ
5 ± (ϕ̃± + π/2)αz]

}

χ|z=±a/2 = 0. (30)
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3. Induced vacuum energy in the bundle curvature background

Let us consider the quantized charged massive spinor field in the background of
a static uniform magnetic field; then ∇ = ∂− ieA and the connection can be chosen
as A = (−yB, 0, 0), where B is the value of the magnetic field strength which is
directed along the z-axis in Cartesian coordinates r = (x, y, z), B = (0, 0, B). The
one-particle energy spectrum is

Enk = ±ωnk, ωnk =
√

2n|eB|+ k2 +m2,−∞ < k <∞, n = 0, 1, 2, ... , (31)

k is the value of the wave number vector along the z-axis, and n labels the Landau
levels. Using the explicit form of the complete set of solutions to the Dirac equation,
one can obtain the formal expression for the vacuum expectation value of the energy
density

ε∞ = −|eB|
2π2

∞
∫

−∞

dk

∞
∑

n=0

ιnωnk, (32)

where the superscript on the left-hand side indicates that the magnetic field fills the
whole (infinite) space; the appearance of factor ιn = 1− 1

2δn0 on the right-hand side

is due to the fact that there is one solution for the lowest Landau level, ψ
(0)
q0k(r) (q

is the value of the wave number vector along the x-axis, −∞ < q < ∞), and there

are two solutions otherwise, ψ
(j)
qnk(r) (j = 1, 2), n ≥ 1. The integral and the sum

in (32) are divergent and require regularization and renormalization. This problem
has been solved long ago by Heisenberg and Euler [10] (see also [11]), and we just
list here their result

ε∞ren =
1

8π2

∞
∫

0

dτ

τ
e−τ

[

eBm2

τ
coth

(

eBτ

m2

)

− m4

τ2
− 1

3
e2B2

]

; (33)

note that the renormalization procedure involves subtraction at B = 0 and renor-
malization of the charge.

Let us turn now to the quantized charged massive spinor field in the background
of a static uniform magnetic field in spatial region Ω bounded by two parallel planes
∂Ω(+) and ∂Ω(−); the position of ∂Ω(±) is identified with z = ±a/2, and the
magnetic field is orthogonal to the planes. The solution to the Dirac equation
in region Ω is chosen as a superposition of two plane waves propagating in opposite
directions along the z-axis,

ψ
(j)
qnl(r) = ψ

(j)
qnkl

(r) + ψ
(j)
qn−kl

(r), j = 0, 1, 2, (34)

where the values of wave number vector kl (l = 0,±1,±2, ...) are determined from
the boundary condition, see (28):
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{

I − β exp[i(ϕ±γ
5 ± ϕ̃±α

z)]
}

ψ
(j)
qnl(r)|z=±a/2 = 0, (j = 1, 2) n ≥ 1 (35)

and

[

I +
β

2

(

±αzγ5 − 1

)

ei(ϕ±−ϕ̃±)γ5

Θ(±eB) (36)

−β
2

(

±αzγ5 + 1

)

ei(ϕ±+ϕ̃±)γ5

Θ(∓eB)

]

ψ
(0)
q0l(r)|z=±a/2 = 0;

the step function is introduced as Θ(u) = 1 at u > 0 and Θ(u) = 0 at u < 0.
This boundary condition ensures that the normal component of current Jqnlj(r) =

ψ
(j)†
qnl (r)αψ

(j)
qnl(r) (j = 0, 1, 2) vanishes at the planes, see (29),

Jz
qnlj(r)|z=±a/2 = 0, (37)

which signifies that the quantized matter is confined within the planes.

The boundary condition depends on four self-adjoint extension parameters,
ϕ+, ϕ̃+, ϕ− and ϕ̃−, in the case of n ≥ 1, see (35), and on two self-adjoint ex-
tension parameters, ϕ+ − ϕ̃+ and ϕ− + ϕ̃− (eB > 0), or ϕ+ + ϕ̃+ and ϕ− − ϕ̃−

(eB < 0), in the case of n = 0, see (36). It should be noted that value kl = 0 is
allowed for special cases only, when the following condition holds:

sin
ϕ+ − ϕ− + ϕ̃+ + ϕ̃−

2
sin

ϕ+ − ϕ− − ϕ̃+ − ϕ̃−

2
= 0. (38)

The spectrum of kl is determined from a transcendental equation which in general
possesses two branches and allows for complex values of kl (details are published
elsewhere). It is not clear which of the branches should be chosen, and, therefore,
we restrict ourselves to boundary conditions corresponding to the case of a single
branch. The latter is ensured by imposing constraint

ϕ+ = ϕ− = ϕ, ϕ̃+ = ϕ̃− = ϕ̃. (39)

Then relations (28) and (30) take forms

{

I − β exp[i(ϕγ5 ± ϕ̃αz)]
}

χ|z=±a/2 = 0 (40)

and

χ̃†β exp
{

i[ϕγ5 ± (ϕ̃+ π/2)αz]
}

χ|z=±a/2 = 0. (41)

respectively, while the equation determining the spectrum of kl takes form
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cos(kla) +
sgn(Enkl

)ωnkl
cos ϕ̃−m cosϕ

kl sin ϕ̃
sin(kla) = 0, (42)

where sgn(u) = Θ(u)−Θ(−u) is the sign function; note that the spectrum is real,
consisting of values of the same sign, say, kl > 0 (values of the opposite sign (kl < 0)
should be excluded to avoid double counting). In the case of ϕ̃ = 0, the spectrum of
kl is independent of the number of the Landau level, n, and of the sign of the one-
particle energy, sgn(Enkl

); moreover, it is independent of ϕ, since the determining
equation takes form

sin(kla) = 0; (43)

note that value kl = 0 is admissible in this case, see (38)-(39). In what follows, we
shall consider the most general case of two self-adjoint extension parameters, ϕ and
ϕ̃, when the kl-spectrum depends on n and on sgn(Enkl

), see (42).

Using the explicit form of the complete set of wave functions ψ
(j)
qnl(r) (j = 0, 1, 2),

we obtain the following expression for the vacuum expectation value of the energy
per unit area of the boundary surface

E

S
≡

a/2
∫

−a/2

dz ε = −|eB|
2π

∑

sgn(Enkl
)

∑

l

∞
∑

n=0

ιnωnkl
. (44)

4. Casimir energy and force

Expression (44) can be regarded as purely formal, since it is ill-defined due to
the divergence of infinite sums over l and n. To tame the divergence, a factor
containing a regularization parameter should be inserted in (44). A summation
over values kl > 0, which are determined by (42), can be performed with the use of
the following version of the Abel-Plana formula:

∑

sgn(Enkl
)

∑

kl>0

f(k2l ) =
a

π

∞
∫

−∞

dkf(k2) +
2ia

π

∞
∫

0

dκΛ(κ){f [(−iκ)2]− f [(iκ)2]} (45)

−f(0)− 1

π

∞
∫

−∞

dkf(k2)
m cosϕ sin ϕ̃[k2 − µn(ϕ, ϕ̃)]

[k2 + µn(ϕ, ϕ̃)]2 + 4k2m2 cos2 ϕ sin2 ϕ̃
,

where

Λ(κ) =

(

−[κ2 cos 2ϕ̃− µn(ϕ, ϕ̃)]e
2κa + κ2 + 2κm cosϕ sin ϕ̃− µn(ϕ, ϕ̃) (46)
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+
sin ϕ̃

a

{

−κ2m cosϕ(cos 2ϕ̃e2κa − 1) + [(2κ sin ϕ̃−m cosϕ)e2κa

+m cosϕ]µn(ϕ, ϕ̃)} [κ2 − 2κm cosϕ sin ϕ̃− µn(ϕ, ϕ̃)]
−1

)

×
{

[κ2 − 2κm cosϕ sin ϕ̃− µn(ϕ, ϕ̃)]e
4κa

−2[κ2 cos 2ϕ̃− µn(ϕ, ϕ̃)]e
2κa + κ2 + 2κm cosϕ sin ϕ̃− µn(ϕ, ϕ̃)

}−1

and

µn(ϕ, ϕ̃) = 2n|eB| cos2 ϕ̃+m2 sin(ϕ+ ϕ̃) sin(ϕ− ϕ̃). (47)

In (45), f(u2) as a function of complex variable u is assumed to decrease sufficiently
fast at large distances from the origin of the complex u-plane, and this decrease is
due to the use of some kind of regularization for (44). However, the regularization
in the second integral on the right-hand side of (45) can be removed; then

i{f [(−iκ)2]− f [(iκ)2]} = −|eB|
π

∞
∑

n=0

ιn

√

κ2 − ω2
n0 (48)

with the range of κ restricted to κ > ωn0 for the corresponding terms; here, recalling
(31), ωn0 =

√

2n|eB|+m2. As to the first integral on the right-hand side of (45),
one immediately recognizes that it is equal to ε∞ (32) multiplied by a. Hence, if
one ignores for a moment the terms in the last line of (45), then the problem of
regularization and removal of the divergency in expression (44) is the same as that
in the case of no boundaries, when the magnetic field fills the whole space. Defining
the Casimir energy as the vacuum energy per unit area of the boundary surface,
which is renormalized in the same way as in the case of no boundaries, we obtain

Eren

S
= aε∞ren −

2|eB|
π2

a

∞
∑

n=0

ιn

∞
∫

ωn0

dκΛ(κ)
√

κ2 − ω2
n0 +

|eB|
2π

∞
∑

n=0

ιnωn0 (49)

+
|eB|
2π2

∞
∫

−∞

dk

∞
∑

n=0

ιn

√

k2 + ω2
n0

m cosϕ sin ϕ̃[k2 − µn(ϕ, ϕ̃)]

[k2 + µn(ϕ, ϕ̃)]2 + 4k2m2 cos2 ϕ sin2 ϕ̃
,

ε∞ren is given by (33). The sums and the integral in the last line of (49) (which are due
to the terms in the last line of (45) and which can be interpreted as describing the
proper energies of the boundary planes containing the sources of the magnetic field)
are divergent, but this divergency is of no concern for us, because it has no physical
consequences. Rather than the Casimir energy, a physically relevant quantity is the
Casimir force per unit area of the boundary surface, i.e. pressure, which is defined
as
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F = − ∂

∂a

Eren

S
, (50)

and which is free from divergencies. We obtain

F = −ε∞ren +∆ϕ,ϕ̃(a), (51)

where

∆ϕ,ϕ̃(a) = −2|eB|
π2

∞
∑

n=0

ιn

∞
∫

ωn0

dκΥ(κ)
√

κ2 − ω2
n0 (52)

and

Υ(κ) ≡ − ∂

∂a
aΛ(κ) =

[

υ1(κ)e
6κa + υ2(κ)e

4κa + υ3(κ)e
2κa + υ4(κ)

]

(53)

×[κ2 − 2κm cosϕ sin ϕ̃− µn(ϕ, ϕ̃)]e
4κa

−2[κ2 cos 2ϕ̃− µn(ϕ, ϕ̃)]e
2κa + κ2 + 2κm cosϕ sin ϕ̃− µn(ϕ, ϕ̃)

}−2
,

υ1(κ) = −(2κa− 1)[κ2 − 2κm cosϕ sin ϕ̃− µn(ϕ, ϕ̃)] (54)

×[κ2 cos 2ϕ̃− µn(ϕ, ϕ̃)]− 2[κ2m cosϕ cos 2ϕ̃− (2κ sin ϕ̃−m cosϕ)µn(ϕ, ϕ̃)]κ sin ϕ̃,

υ2(κ) = (4κa− 3)
{

[κ2 − µn(ϕ, ϕ̃)]
2 − 4κ2m2 cos2 ϕ sin2 ϕ̃

}

(55)

+8κ2[κ2 cos2 ϕ̃−m2 cos2 ϕ− µn(ϕ, ϕ̃)] sin
2 ϕ̃+ 4[κ2 + µn(ϕ, ϕ̃)]κm cosϕ sin ϕ̃,

υ3(κ) = −(2κa− 3)[κ2 + 2κm cosϕ sin ϕ̃− µn(ϕ, ϕ̃)] (56)

×[κ2 cos 2ϕ̃− µn(ϕ, ϕ̃)]− 2[κ2m cosϕ cos 2ϕ̃+ (2κ sin ϕ̃+m cosϕ)µn(ϕ, ϕ̃)]κ sin ϕ̃,

υ4(κ) = −[κ2 + 2κm cosϕ sin ϕ̃− µn(ϕ, ϕ̃)]
2. (57)

5. Asymptotics at small and large separations of plates

In the case of a weak magnetic field, |B| ≪ m2|e|−1, substituting the sum by

integral
∞
∫

0

dn and changing the integration variable in (52), we get

∆ϕ,ϕ̃(a) = − 1

π2

∞
∫

m

dκ(κ2 −m2)3/2
1
∫

0

dv
√
1− vΥ̃(κ, v), |eB| ≪ m2, (58)

where Υ̃(κ, v) is obtained from Υ(κ) (53) by substitution

µn(ϕ, ϕ̃) → µ̃v,κ2(ϕ, ϕ̃) with
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µ̃v,κ2(ϕ, ϕ̃) = v(κ2 −m2) cos2 ϕ̃+m2 sin(ϕ+ ϕ̃) sin(ϕ− ϕ̃). (59)

In the limit of small distances between the plates, ma≪ 1, (58) becomes indepen-
dent of the ϕ-parameter:

∆ϕ,ϕ̃(a) =
1

4a4

{

π2

30
−

1
∫

0

dv ρϕ̃(v)

(

1− |ρϕ̃(v)|
π

)[

3

2

√
1− v ρϕ̃(v) (60)

×
(

1− |ρϕ̃(v)|
π

)

+
v sin 2ϕ̃

1− v cos2 ϕ̃

(

1

2
− |ρϕ̃(v)|

π

)]}

,
√

|eB|a≪ ma≪ 1,

where

ρϕ̃(v) = arcsin

(

sin ϕ̃
√

1− v cos2 ϕ̃

)

. (61)

Thus, ∆ϕ,ϕ̃(a) in this case is power-dependent on the distance between the plates as
a−4 with the dimensionless constant of proportionality, either positive or negative,
depending on the value of the ϕ̃-parameter. In particular, we get

∆ϕ,0(a) =
π2

120

1

a4
,
√

|eB|a≪ ma≪ 1 (62)

and

∆ϕ,−π/2(a) = −7

8

π2

120

1

a4
,
√

|eB|a≪ ma≪ 1. (63)

In the limit of large distances between the plates, ma≫ 1, ∆ϕ,ϕ̃(a) (58) takes form

∆ϕ,ϕ̃(a) =
2

π2

∞
∫

m

dκκ(κ2 −m2)3/2e−2κa

1
∫

0

dv
√
1− v (64)

×
{

a
κ2 cos 2ϕ̃− µ̃v,κ2(ϕ, ϕ̃)

κ2 − 2κm cosϕ sin ϕ̃− µ̃v,κ2(ϕ, ϕ̃)

− (2κ sin ϕ̃−m cosϕ)µ̃v,κ2(ϕ, ϕ̃)− κ2m cosϕ cos 2ϕ̃

[κ2 − 2κm cosϕ sin ϕ̃− µ̃v,κ2(ϕ, ϕ̃)]2
sin ϕ̃

}

,

|eB| ≪ m2, ma≫ 1.

Clearly, (64) is suppressed as exp(−2ma). In particular, we get

∆ϕ,0(a) =
1

2π3/2

m5/2

a3/2
e−2ma

[

1 +O

(

1

ma

)]

, |eB| ≪ m2, ma≫ 1 (65)
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and

∆ϕ,−π/2(a) =











− 3
16π3/2

m3/2

a5/2 e
−2ma[1 +O( 1

ma )], ϕ = 0

− tan2(ϕ/2)

2π3/2
m5/2

a3/2 e
−2ma[1 +O( 1

ma )], ϕ 6= 0











, (66)

|eB| ≪ m2, ma≫ 1.

In the case of a strong magnetic field, |B| ≫ m2|e|−1, one has

∆ϕ,ϕ̃(a) = −|eB|
π2





∞
∫

m

dκ
√

κ2 −m2Υ(κ)|n=0 (67)

+2

∞
∑

n=1

∞
∫

√
2n|eB|

dκ
√

κ2 − 2n|eB|Υ(κ)|m=0









, |eB| ≫ m2.

In the limit of extremely small distances between the plates, ma≪
√

|eB|a≪ 1,

the analysis is similar to that of the limit of
√

|eB|a≪ ma≪ 1, yielding the same

results as (61)-(63). Otherwise, in the limit of
√

|eB|a ≫ 1, only the first term
in square brackets on the right-hand side of (67) matters. In the limit of small
distances between the plates this term becomes ϕ-independent, yielding

∆ϕ,ϕ̃(a) =
|eB|
4a2

[

1

6
− |ϕ̃|

π

(

1− |ϕ̃|
π

)]

,
√

|eB|a≫ 1, ma≪ 1. (68)

In particular, we get

∆ϕ,0(a) =
|eB|
24a2

,
√

|eB|a≫ 1, ma≪ 1, (69)

∆ϕ,±π/4(a) = − |eB|
192a2

,
√

|eB|a≫ 1, ma≪ 1 (70)

and

∆ϕ,−π/2(a) = − |eB|
48a2

,
√

|eB|a≫ 1, ma≪ 1. (71)

In the limit of large distances between the plates, the first term in square brackets
on the right-hand side of (67) yields

∆ϕ,ϕ̃(a) =
2|eB|
π2

∞
∫

m

dκκ(κ2 −m2)1/2e−2κa (72)
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×
{

a
κ2 cos 2ϕ̃−m2 sin(ϕ+ ϕ̃) sin(ϕ− ϕ̃)

κ2 − 2κm cosϕ sin ϕ̃−m2 sin(ϕ+ ϕ̃) sin(ϕ− ϕ̃)

+
κ2m cosϕ cos 2ϕ̃− (2κ sin ϕ̃−m cosϕ)m2 sin(ϕ+ ϕ̃) sin(ϕ− ϕ̃)

[κ2 − 2κm cosϕ sin ϕ̃−m2 sin(ϕ+ ϕ̃) sin(ϕ− ϕ̃)]2
sin ϕ̃

}

,

√

|eB|a≫ ma≫ 1,

which is obviously suppressed as exp(−2ma). In particular, we get

∆ϕ,0(a) =
|eB|
2π3/2

m3/2

a1/2
e−2ma

[

1 +O

(

1

ma

)]

,
√

|eB|a≫ ma≫ 1 (73)

and

∆ϕ,−π/2(a) =











− |eB|
16π3/2

m1/2

a3/2 e
−2ma[1 +O( 1

ma )], ϕ = 0

− |eB| tan2(ϕ/2)
2π3/2

m3/2

a1/2 e
−2ma[1 +O( 1

ma )], ϕ 6= 0











, (74)

√

|eB|a≫ ma≫ 1.

6. Summary and discussion

An influence of a background uniform magnetic field and boundary conditions
on the vacuum of the quantized charged spinor matter field (of mass m) confined
between two parallel plates has been comprehensively analyzed, and the Casimir
force acting onto the plates is found to take the form of (51), where all depen-
dence on the distance between the plates, a, and the choice of boundary conditions
parametrized by ϕ and ϕ̃ is contained in the second term, ∆ϕ,ϕ̃(a) (52), see (53)-
(56). In the physically meaningful case, ma≫ 1, this term is exponentially damped
as exp(−2ma), see (64)-(66), (72)-(74), and the Casimir force is given by the first
term, F = −ε∞ren. This situation is to be contrasted with the case of hot dense mat-
ter in thermal equilibrium; the pressure in the latter case may become dependent on
the distance between the plates and the choice of boundary conditions. We validate
this statement in Appendix by considering, as an example, the axial current density
in a strong (supercritical) magnetic field.

Returning to the vacuum effects, let us note that the Heisenberg-Euler vacuum
energy density, ε∞ren, see (33), is negative (vanishing at B = 0 only), hence, the
Casimir effect is repulsive, i.e. the pressure from the vacuum onto the plates is
positive. Defining the critical value of the magnetic field as Bcrit = m2|e|−1, one can
obtain the following expression for the Casimir force in the limit of a supercritical
magnetic field, |B|≫Bcrit, from (33):
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F =
1

24π2

1

λ4C

(

B

Bcrit

)2

ln
2|B|
Bcrit

(75)

(recall that λC = m−1 is the Compton wavelength of the matter field). Note that
the critical value is the lowest one, Bcrit = 4.41× 1013 G, for the case of quantized
electron-positron matter, and supercritical magnetic fields with |B| ≫ 1013G may
be attainable in some astrophysical objects, such as neutron stars and magnetars
[12], and also gamma-ray bursters in scenarios involving protomagnetars [13]. A
proper account for the influence of Casimir pressure (75) on physical processes in
these objects should be taken.

Supercritical magnetic fields are not feasible in terrestrial laboratories where the
maximal values of steady magnetic fields are of order of 105G, see, e.g., [14]. In the
case of a subcritical magnetic field, |B|≪Bcrit, one obtains from (33):

F =
1

360π2

1

λ4C

(

B

Bcrit

)4

. (76)

Let us compare this with the attractive Casimir force which is due to the quantized
electromagnetic field, see FEM (1), and define ratio

F

FEM
= − 2

3π4

(

a

λC

)4(
B

Bcrit

)4

. (77)

At a = 10−6m and B = 105G the attraction is prevailing over the repulsion by six
orders of magnitude, FEM/F ≈ −106, and the Casimir force is FEM ≈ −1.3mPa.
However, at a = 10−5m and B = 106G the repulsion becomes dominant over the
attraction by two orders of magnitude, F/FEM ≈ −102, and the Casimir force takes
value F ≈ 0.009mPa. Otherwise, the same value of the Casimir force is achieved
at a = 10−6m and B = 107G. Thus, an experimental observation of the influence
of the background magnetic field on the Casimir pressure seems to be possible in
some future in terrestrial laboratories.

Appendix

Let us consider hot dense ultrarelativistic spinor matter in the background of
a static uniform magnetic field which is orthogonal to the bounding plates. Since
field strength B, temperature T and chemical potential µ are assumed to be large,

|eB| >> m2, T >> m, µ >> m, (78)

we employ a simplifying approximation neglecting the mass of the matter field and
put m = 0 in the following. Then the equation determining the spectrum of the
wave number vector in the direction of the magnetic field, see (42), takes form
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cos(kla) + k−1
l sgn(Enkl

)ωnkl
cotϕ̃ sin(kla) = 0, (79)

whereas the boundary condition becomes dependent on one parameter, see (40).
The z-component of the axial current density is defined as

Jz5 =
∑

sgn(Enkl
)

∑

l

∞
∑

n=0

sgn(Enkl
)ψ

(j)†
qnl (r)α

zγ5ψ
(j)
qnl(r) (80)

×
(

exp {[ωnkl
− sgn(Enkl

)µ] /T }+ 1

)−1

.

Only the lowest Landau level (n = 0) contributes to (80), thus the kl-spectrum is

kl = [lπ − sgn(E0kl
)ϕ̃]/a, l ∈ Z, kl > 0, (81)

Z is the set of integer numbers. Then the calculation of the sums over l and
sgn(Enkl

) yields

Jz5 = − eB

2πa
sgn(µ)F

(

|µ|a+ sgn(µ)
[

ϕ̃− sgn(ϕ̃)
π

2

]

;Ta
)

, (82)

where

F (s; t) =
s

π
− 1

π

∞
∫

0

dv
sin(2s)sinh(π/t)

[cos(2s) + cosh(2v)][cosh(π/t) + cos(v/t)]
(83)

+
sinh {[arctan(tans)]/t}

cosh[π/(2t)] + cosh {[arctan(tans)]/t} .

In view of relation

lim
a→∞

1

a
F (|µ|a; Ta) = |µ|/π, (84)

the case of a magnetic field filling the whole (infinite) space is obtained from (82)
as a limiting case:

lim
a→∞

Jz5 = − eB

2π2
µ. (85)

Unlike this unrealistic case, the realistic case of a magnetic field confined to a
region between the bounding plates is temperature dependent, see (82) and (83).
In particular, we get

lim
T→0

Jz5 = − eB

2πa
sgn(µ)[[[|µ|a + sgn(µ)ϕ̃]/π +Θ(−µϕ̃)]] (86)
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and

lim
T→∞

Jz5 = − eB

2π2
{µ+ [ϕ̃− sgn(ϕ̃)π/2]/a} ; (87)

here [[u]] denotes the integer part of quantity u (i.e. the integer which is less than
or equal to u).
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SAMOADJUNGOVANOST, KONFAJNMENT I KAZIMIROV

EFEKAT

Izučavan je uticaj klasičnog magnetnog polja na vakuum kvantnog polja naelek-

trisane spinorske materije zatvorenog izmedju dve paralelne materijalne pločice. U

slučaju uniformnog magnetnog polja tranzverzalnog na pločice pokazana je odbojnost

Kazimirovog efekta, nezavisno od graničnih uslova i rastojanja izmedju pločica.

Ključne reči: magnetno polje, Kazimirov efekat, vakuum, spinorska materija


