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Abstract. Time statistics of extreme events (EEs) in one-dimensional discrete Salerno 

lattices is investigated numerically. We show that the dependence of the mean return time 

of EEs on the amplitude threshold can be used as a criterion to differentiate between 

various dynamical regimes of the extreme events. Also, we found that dispersion of points 

on the time probability distribution curve can be an indicator of the appearance of EEs in 

the system, but it has to be complemented with other statistical measures. The results 

obtained here can be used to distinguish between different dynamical regimes and as 

identifiers of the EEs existence in the lattice system. 
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1. INTRODUCTION 

Extreme events (EE) – rogue or freak waves - can be seen as transient or persistent 

structures with huge heights (amplitudes), statistically not so significant in the system under 

observation. Originally, the term ‘rogue wave’ referred to isolated ocean waves of 

considerable height that ‘appear out of nowhere and disappear without a trace’ (Akhmediev 

et al., 2009) in relatively calm seas. Theoretical investigations of ocean freak waves usually 

use the nonlinear Schrödinger (NLS) equation and it has been shown that the probability of 

their appearance is not negligible (Onorato et al., 2001). The modulation instability (MI) is 

considered as the main origin of EEs in nonlinear systems (Akhmediev and Ankiewicz, 

2011, Onorato et al., 2006). MI induces local exponential growth of an initially sinusoidal 

long-wavelength perturbation of a plane wave solution. Extreme events of this type have 

also been observed in nonlinear optical systems (Solli et al., 2007), ultra-cold matter (Bludov 

et al., 2009), microwave experiments (Höhmann et al., 2010), etc. 
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Regarding the criterion to define an event as the extreme one, usually the significant 

height is used (Kharif and Pelinovsky, 2003). Based on the observations with water waves, the 

significant wave height Hs is defined as the average height of one-third of the highest waves in 

the height distribution. An extreme event can be classified as the one with a height greater 

than hth=2.2 Hs. 

In this paper, we focus on one-dimensional discrete nonlinear lattices and investigate 

EEs that appear as a result of discrete soliton or breather generation and their mutual 

interactions. We address the question of correlation of probability of EEs generation with 

the return time statistics of these events that we explore in detail. We use the Salerno model 

(SM) (Salerno, 1992) which interpolates between a fully integrable discrete lattice of the 

Ablowitz-Ladik (AL) type (Ablowitz and Ladik, 1976) and the nonintegrable discrete 

nonlinear Schrödinger (DNLS) type (Molina and Tsironis, 1993).  

The paper is organized as follows. The Salerno model of wave propagation through 

the system is presented in Section 2. Details on time statistics together with results and 

discussion are given in Section 3. In Section 4, conclusions are briefly summarized. 

2. THE SALERNO MODEL 

We consider the wave propagation in one-dimensional nonlinear lattice described by 

the Salerno model equations,  
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where μ and γ are two nonlinearity parameters corresponding to nonlocal and local 

nonlinearity, respectively. For μ=0 the model becomes the DNLS equation with cubic 

nonlinearity, while for γ=0 it reduces to AL equation. Model (1) conserves the first 

moment (related with the norm) and the Hamiltonian (corresponding to the energy of the 

system). Equations (1) exhibit MI which may give rise to spatially localized solutions in 

the form of discrete solitons and breathers (DBs) (Flach and Willis, 1998) and it was 

proposed that they might serve as models for freak waves, i. e. extreme events. 

For the purpose of numerical simulations, the variables Ψn in Eq.(1) are rescaled as 

,/  nn  so that in terms of ξn dynamical equations read 
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where Γ=γ/μ. This way, the whole two-dimensional parameter space (γ, μ) is scaled by 

μ=1, leaving γ as a free parameter. By letting Γ attain large values, we can go close to the 

DNLS limit. The exact DNLS limit (μ=0) has to be calculated separately. 

We consider the evolution of an initially uniform state (plane wave solution), slightly 

amplitude modulated by some initial noise to accelerate the development of MI. This 

uniform solution is chosen in the interval where linear stability analysis has shown that it 

was unstable (Maluckov et al., 2009). We numerically integrate the system of Eqs.(2) 

with periodic boundary conditions using a sixth order Runge-Kutta algorithm for different 

values of Γ. The size of the lattice is N=101 and the time step is fixed to 10
-4

. 

In the previous study on this matter (Maluckov et al., 2009), different dynamical regimes 

in terms of EEs have been reported. Three main regimes can be selected: the regime with 

dominant local nonlinearity, the regime with competing local and nonlocal nonlinearity, and 
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the regime with dominant nonlocal nonlinearity (i.e. vicinity of the AL limit). It was shown 

that the EEs are most probable in the near integrable (AL) limit. In this paper, we want to 

probe into the return time statistics of these events and to correlate time statistics with other 

statistical measures employed previously. The goal is to identify additional measures that can 

be used to differentiate between various dynamical regimes. 

3. TIME STATISTICS – RESULTS AND DISCUSSION 

We focus on the time statistics of extreme events. We investigate in detail the return time 

of EEs and the probability distribution of the return time. The return time r is defined as a time 

interval between the appearance at a given position of two successive events with amplitudes 

above certain predetermined height threshold q. The procedure regarding the calculation of 

the return time probability is given in (Maluckov et al., 2013, Manĉić et al., 2017). 

Firstly, we study the mean return time R of an EE. Since it is a threshold dependent 

quantity, we investigate its dependence on a threshold q for different dynamical regimes, 

i.e. for different values of Γ. The results are presented in Figure 1. 

 

Fig. 1 The mean return time R of extreme events as a function of the threshold amplitude 

q for different values of Γ. The results are given in the log-log presentation.  

By observing the curves R(q) for different Γ, we can distinguish three different regimes. 

The first regime (i.e. the regime with dominant nonlocal nonlinearity) corresponds to very 

small values of Γ (Γ < 0.005) and is characterized by the increase of R with q. In the second 

regime with dominant local nonlinearity, corresponding to high values of Γ (Γ > 0.01), 

curves R(q) have a complex behaviour and one can notice maximum and minimum points 

on the graphs. There is a third, transient regime between the above mentioned regimes. 
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Here, R grows with q up to a certain value where it saturates for the further increase of q up 

to a certain level, when it starts to grow with q again. 

We expect this differentiation of regimes to correlate with dynamical evolution of the 

system, i. e. regimes from the same group to have a similar dynamical evolution. Indeed, if we 

look at the dynamical evolution of a system for different Γ (Figure 2), these similarities are 

evident. For small values of Γ (first regime, closeness of AL limit), discrete breathers of 

relatively small amplitudes are mobile and almost noninteracting (Fig.2(a) upper row). As Γ 

increases (transient regime), there is an onset of interactions between localized modes, they 

merge and form discrete rogue waves (i.e. extreme events) as transient structures with very 

high amplitudes (Fig. 2(b) upper row) – this corresponds to the transient regime on the 

graph R(q). With further increase of Γ, DNLS-type of behaviour dominates, i.e. the self-

trapping is the main localization effect resulting in narrow high amplitude localized 

structures in the lattice, which are classified as persistent RW structures (Fig. 2(c) upper 

row). The corresponding R(q) graphs have maxima and minima, the maximum shifts 

toward the lower values of q with increasing Γ. Differentiation between dynamical regimes 

is also evident if we look at the amplitude profiles for a certain moment of time given in the 

lower portion of Fig. 2. These dynamical regimes have been reported in (Maluckov et al., 

2009).  

 

Fig. 2 Evolution of scaled amplitudes (upper row) and amplitude profile at moment t 

(lower row): (a) Γ=0.0001, t=1000 (first regime), (b) Γ=0.005, t=1000 (transient 

regime) and (c) Γ=0.1, t=1300 (second regime).  

As a next step and before going deeper into the time statistics of EEs, we wanted to 

check if these findings, regarding the R(q) behaviour, correlate with other statistical 

measures reported earlier, namely, with the height probability density (HPD) Ph(h) (Maluckov 

et al., 2009). We note that the tails of HPDs are related to extreme events and the 

appearance of plateau on these curves indicates an increase in the EE probability. The 
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probability of EEs, Pee, is obtained by integration of the (normalized) HPD from h=hth up to 

infinity. The normalized HPD curves for different values of Γ are presented in Figure 3. 

 

Fig. 3 The normalized height probability density Ph(h) for different values of Γ.  

 

As expected, the same differentiation of regimes found regarding the behaviour of the 

R(q) curve is found when observing the tendencies in the Ph(h) curves. For small values 

of Γ (first regime), the tails of the HPD curves decay, indicating negligible probability for 

the occurrence of EEs (Pee is of the order 0.02). In the transient regime, a plateau appears 

on the Ph curves, meaning that EEs are more probable now (Pee~0.07). With a further 

increase of Γ (entering the second regime), this plateau is still present and for Γ=0.1, Pee has 

a maximum value of 0.11. A consecutive increase of Γ leads to a disappearance of the plateau 

and thus to a decrease of the Pee (e.g. Pee=0.06 for Γ=0.4). On the R(q) graph, the position of 

the maximum shifts to smaller q values. For Γ>>0.1, Pee decreases to 0.02 and less. 

In the end, we address the main question of return time probability Pr of the EEs for 

the regimes identified above. One expects to observe a similar Pr behaviour for the 

corresponding thresholds q within separate regimes. The q values are chosen from the 

R(q) curves in such a way as to correlate between different Γ values within one regime, 

i.e. q values are taken at some characteristic positions (where possible). The Pr curves for 

different Γ values, taken for the same threshold q, should show a similar behaviour. We 

start by examining the first regime. The results are presented in Figure 4. In Fig. 4(a) 

various thresholds q for which Pr curves are calculated are presented, whereas in 

Fig. 4(b), (c) and (d), curves Pr(r/R) for those thresholds and for different Γ are given. 

And indeed, for all (fixed) q values, the corresponding curves for different Γ show a 

similar behaviour. These curves can be fitted with one (or two) power-law functions.  
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Fig. 4 (a) The mean return time R of extreme events as a function of the threshold 

amplitude q for different values of Γ corresponding to the first regime (regime with 

dominant nonlocal nonlinearity); Return time probability Pr (normalized so that 

the surface below each curve is equal to 1) as a function of r/R for different Γ and 

for q=q1 (b), q=q2 (c) and q=q3 (d); (q3 ≤ hth). The quantity r/R is the ratio between 

the return time r , and the mean return time R, of an EE. 

 

Corresponding Pr curves for Γ values from the second regime and the choice of 

thresholds q are shown in Figure 5. The principle behind the choice of thresholds q is 

illustrated on the R(q) curve for a single Γ value (Γ=0.1) for the reason of clarity 

(Fig. 5(a)). As previously, for fixed q values, the corresponding Pr curves for different Γ 

exhibit a similar behaviour (Fig. 4(b-f)). Pr curves in this regime and for q=q0 to q2max can 

be fitted with two power law functions. For q>q2max dispersion of the points on Pr curves 

is significant and the fitting procedure cannot be applied with satisfactory accuracy.  
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Fig. 5 (a) The mean return time R of extreme events as a function of the threshold 

amplitude q for different values of Γ corresponding to the second regime (regime 

with dominant local nonlinearity); Return time probability Pr (normalized so that 

the surface below each curve is equal to 1) as a function of r/R for different Γ and 

for q=q0 (b), q=q1 (c), q=q2max (d), q=q3 (e) and q=q4min (f); (q2max ≤ hth). 

 

Finally, we present Pr curves corresponding to the transient regime (Fig. 6). The 

choice of q values is presented in Fig. 6(a) whereas Pr curves for fixed q and different Γ 

are given in Fig. 6 (b-d). The same conclusion as the one from previously explored 

regimes is valid here, too, Pr curves for fixed q and different Γ agree very well. Pr curves 
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for q=q0 can be fitted with one or two power law functions, whereas curves corresponding 

to q=q1, q2 cannot be fitted due to a significant dispersion of data points. 

 

Fig. 6 (a) The mean return time R of extreme events as a function of the threshold 

amplitude q for different values of Γ corresponding to the transient regime; Return 

time probability Pr (normalized so that the surface below each curve is equal to 1) 

as a function of r/R for different Γ and for q=q0 (b), q=q1 (c) and q=q2 (d); (q1 ≤ hth). 

 

The large dispersion of data in the regimes with Γ > 0.005, i.e. the transient and the 

regime with significant local nonlinearity, can be associated with the leading role of self-

trapping of light in the localization of energy. Let us be reminded that it is initiated by 

development of MI which is, by itself, a process dependent on the light intensity threshold. 

The result is the trapping of energy and, consequently, a huge increase in the light intensity 

at a few lattice sites. In our setup, the system is initially prepared so that the MI develops 

quickly. The largest part of injected energy is trapped in a few lattice sites and these sites 

can be treated as ‘isolated’ from the rest of the lattice due to the negligible energy exchange 

between them and the neighboring sites. This effect is more prompted if the local 

nonlinearity strength is higher (Γ ≥ 0.1). The amplitude of events in ‘isolated’ sites is often 

above the threshold values derived with respect to the Hs. Being isolated, such events are 

persistent and the corresponding return time cannot be defined. Figuratively, it tends to 

infinity. This means that persistent huge amplitude structures are excluded from the 

estimation of Pr. Although the number of such events is not high, the energy that they carry 

is significant. On the other hand, the remaining energy is distributed among the rest of the 
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lattice sites. Some of the sites can temporary trap enough energy to be classified as EEs. 

These events can interact and move through the lattice, but due to their number, amplitude 

and calculation time we finally observe a significant dispersion of return times with 

respect to R.  

According to the analysis, the existence of EEs can be related to the increase of 

dispersion on the Pr curve. However, a detailed study which would include other statistical 

measures is necessary to confirm the presence of EEs in the system.  

4. CONCLUSION 

In this paper, we have investigated time statistics of extreme events in one-

dimensional discrete Salerno lattices which include two types of nonlinearity, local and 

nonlocal ones. We show that the dependence of the mean return time of EEs on the 

amplitude threshold, R(q) can be used as a criterion to differentiate between various 

dynamical regimes of the extreme waves. The last were related to the interplay between 

the local and nonlocal nonlinearity in the sense that the local nonlinearity acts in the favor 

of creation of persistent EEs while the nonlocal one involves the interchange of energy 

between lattice sites and formation of transient EEs. Regarding the R(q) behaviour, we 

identify three different regimes: the regime with dominant nonlocal nonlinearity, the 

regime with dominant local nonlinearity and the transient regime. Within each of these 

regimes, probability distributions of return time Pr for different values of nonlinearity 

parameter and for fixed amplitude threshold value exhibit a similar behaviour. These 

findings related to time statistics of EEs correlate with the results obtained in earlier 

studies where different statistical measures were used (Maluckov et al., 2009). Also, 

dispersion of the points on the Pr curve can be an indicator of the appearance of EEs in 

the system, but it has to be complemented with other statistical measures. Therefore, the 

measures derived from the return time statistics, such as the average return time, can be 

implemented to distinguish dynamical properties of the extreme events, as well as 

identifiers of the existence of extreme events in the lattice system. 
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VREMENSKA STATISTIKA EKSTREMNIH DOGAĐAJA U 

DISKRETNIM NELINEARNIM REŠETKAMA 

U ovom radu, numerički proučavamo vremensku statistiku ekstremnih događaja (ED) u 

diskretnim nelinearnim Salerno rešetkama. Pokazali smo da zavisnost srednjeg vremena povratka od 

vrednosti praga amplitude može da se koristi kao kriterijum za razlikovanje dinamičkih režima 

ekstremnih događaja. Takođe, disperzija tačaka na krivoj koja predstavlja raspodelu verovatnoće 

vremena povratka, može da bude indikator pojave ED u sistemu ali uz podatke dobijene iz dodatnih 

statističkih mera. Predstavljeni rezultati mogu se koristiti za razlikovanje dinamičkih režima kao i za 

nalaženje ED u nelinearnim diskretnim rešetkama. 

Kljuĉne reĉi: ekstremni događaji, nelinearna fotonska rešetka, vremenska statistika 
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