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PECULIAR FIVE-DIMENSIONAL BLACK HOLES
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Dejan Simić 
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Abstract. In this article, we review two black hole solutions to the five-dimensional 

Lovelock gravity. These solutions are characterized by the non-vanishing torsion and 

the peculiar property that all their conserved charges vanish. The first solution is a 

spherically symmetric black hole with torsion, which also has zero entropy in the semi-

classical approximation. The second solution is a black ring, which is the five-

dimensional uplift of the BTZ black hole with torsion in three dimensions. 
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1. INTRODUCTION 

Gravity is the interaction which we are aware of for the longest period of time of all 

the known interactions but, paradoxically, it is also the one we know the least about. 

Quantum gravity is the goal which drives the most of modern research in high-energy 

physics. Unfortunately, the realm of quantum gravity is beyond our current experimental 

abilities and researchers have to come up with ingenious ideas how to go around this. 

Fortunately, the effects of quantum gravity are visible in black hole physics already in the 

semi-classical level. This makes black holes the most important objects in gravity and 

this is the very reason why they were extensively studied in the past century. Now, it is 

well known that general relativity cannot be the whole story and for this reason, for 

different purposes, research went in the direction of alternative theories of gravity. Some 

hope to construct a good theory of quantum gravity in this way, others, less ambitious, 

hope to gain a small insight into the quantum effect of gravity. 

Lovelock gravity is an interesting generalization of general relativity, which is a 

unique ghost-free higher derivative theory of gravity with second-order field equations. 

In three and four dimensions, Lovelock gravity reduces to general relativity. Originally, 
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Lovelock gravity is formulated in the second order, i.e. the metric tensor is a dynamical 

field. More interesting is the first order formulation in which we treat the vielbein and 

spin connection as independent dynamical variables of our theory. A theory formulated in 

this way is no longer torsion-less but may and does contain solutions with non-trivial 

torsion. The first order formulation is convenient because it contains torsion-less theory 

as a limit and is conceptually necessary for coupling with fermionic matter fields and 

supersymmetric extensions of the theory. The Einstein-Cartan theory, the first-order 

formulation of general relativity, has the property that all vacuum solutions are without 

torsion, the vacuum solutions of the Lovelock gravity are more complicated since there 

exist solutions with non-zero torsion. Lovelock gravity possesses a large number of black 

hole solutions (see Aros et al., 2001; Boulware and Deser, 1985; Camanho and Edelstein, 

2013; Canfora et al., 2007; Canfora et al., 2008; Cai Rong-Gen and Ohta, 2006; Cai Rong-

Gen et al., 2010; Cvetković and Simić, 2016; Cvetković and Simić, 2018; Dotti et al., 2007; 

Garraffo and Giribet, 2008; Kastor and Mann, 2006; Maeda et al., 2011, and references 

therein). Many of them possess exotic properties, for example, zero mass (Cai Rong-Gen et 

al., 2010; Cvetković and Simić, 2016; Cvetković and Simić, 2018), peculiar topology of the 

event horizon (Cvetković and Simić, 2016; Kastor and Mann, 2006; Maeda et al., 2011; 

Ray, 2015), etc. This brings us to the problem of black hole uniqueness. Solutions of 

general relativity are highly constrained, but things change when we go into higher 

dimensions. In higher dimensions, black hole solutions appear which have the non-spherical 

topology of the event horizon, more precisely, black string, black ring and black brane 

(Emparan and Reall, 2002; Emparan and Reall, 2008; Horowitz and Strominger, 1991; 

Kastor and Mann, 2006). It is not uncommon that these black holes suffer from various 

instabilities, for example, black strings and branes suffer from Gregory-Laflamme 

instability (Gregory and Lafflamme, 1993), and will decay into a black hole with a spherical 

horizon. We see that gravity in higher dimensions is a very interesting area of research, full 

of surprising discoveries, whose importance is in its applications in many different areas. 

In the end, a few words on notation. We use the following conventions: Lorentz 

signature is mostly minus, local Lorentz indices are denoted by the middle letters of the 

Latin alphabet, while space-time indices are denoted by the letters of the Greek alphabet. 

For notational simplicity, we mostly use differential forms instead of coordinate notation,  

in all formulas the wedge product is not written explicitly. 

2. LOVELOCK GRAVITY 

Lovelock gravity (Lovelock, 1971; Lovelock, 1972) is a minimalistic generalization 

of general relativity and is one of many alternative theories of gravity which is under 

constant investigation. 

The first-order formulation of gravity as dynamical variables has the vielbein    
1-form and the spin connection          1-form.  In local coordinates x

µ
, we  

can expand the vielbein and the connection 1-forms as      
            

  
   . 

Gauge symmetries of the theory are local translations (diffeomorphisms) and local 

Lorentz rotations, parameterized by ξ
µ
 and ε

ij
, respectively. 

From the dynamical variables, we can construct field strengths torsion T 
i
 and 

curvature 
ijR  (2-forms), which are given as 
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i i i ik

kT e de e   ,  

 
ij ij i kj

kR d    ,  

where dx     is the exterior covariant derivative. 

Metric tensor g  can be constructed from the vielbein 
ie  and flat metric ij  

   , , ,, ( )i j
ij ijg e e        .  

The anti-symmetry of 
ij  is equivalent to the metric condition g = 0. The geometry 

whose connection is restricted by the metric condition (metric-compatible connection) is 

known as Riemann-Cartan geometry. 

The connection 
ij  determines the parallel transport in the local Lorentz basis.  

Because parallel transport is a geometric operation it is independent of the basis. This 

property is encoded into PGT via the so-called vielbein postulate, which implies 

 ijk ijk ijkK    ,  

where  is the Levi-Civita connection, and 
1

( )
2

ijk ijk kij jkiK T T T     is the contortion. 

The Lagrangian of Lovelock gravity in D dimensions is given by 

 

[ / 2]

0
2

D
p

p

p

L L
D p








 ,  

where p are real parameters and Lp is dimensionally continued Euler density defined in 

the following manner 

 2 1 21 2

1 2 D

2
i i ...i   p pi ji i D p DR R e e    .  

Because we will be concerned with Lovelock gravity in five dimensions, we will only 

give equations of motion for this case. A variation of the action with respect to the 

vielbein e
i
 and spin-connection  

ij
 leads to the following field equation 

 0 1 2( ) 0j k l n jk l n jk ln
ijkln e e e e R e e R R       (1) 

and 

 2( 2 ) 0k l kl n
ijkln e e R T   . (2) 

Note that from the equation (2) it does not follow that torsion is zero in the vacuum, the 

explicit examples of this are given in the following sections where vacuum solutions with 

non-vanishing torsion are constructed. 

Finding the solution to the equations (1) and (2) is greatly simplified in the torsion-less 

sector because the equations (2) are automatically solved in this case.  For this very reason 

finding solutions with non-trivial torsion that exist for arbitrary values of parameters is 

extremely hard and still out of reach. 
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3. SPHERICALLY SYMMETRIC BLACK HOLE 

This section is based on the results in the reference (Cvetković and Simić, 2018). 

3.1. Killing vectors 

We search for the static solution of equations that possesses SO(4) symmetry. Killing 

vectors that correspond to this symmetry are. 
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 (3) 

Independent Killing vectors are 0, 1, 2 and 3. Others are obtained as the commutator of 

the later. Besides the invariance under Killing vectors, we have invariance under local 

Lorentz transformations which form is fixed and the only non-zero are given by 

 
23 34sin sin

, 
sin sin

 
 

 
    .  

3.2. Form of the vielbein and spin connection 

Invariance under Killing vectors greatly restricts the most general form of the vielbein 

and spin connection. 

The most general metric which is invariant under Killing vectors in coordinates 

, , ,( ),µx t r     is of the form 

 2 2 2 2 2 2 2 2 2 2 2 2( sin sin sin )ds N dt B dr r d d d          , (4) 

where functions N and B depend only on r. 

The vielbeins e
i
 are chosen to be of the form 

 

0 1 1 2

3 4

, , ,

sin , sin sin .

e Ndt e B dr e r d

e r d e r d



    

  

 
 (5) 

The most general form of the spin connection is 
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where Ai are arbitrary functions of the radial coordinate. 

3.3. Solution 

Solution to the equations of motion (1) and (2) with the most general form of the 

vielbein (5) and spin connection (6) is found by straightforward computation with the use 

of computer assistance. 

A solution exists only if functions N and B are equal and there are two solutions one 

of which is a well-know Boulware-Deser black hole (Boulware and Deser, 1985) and the 

other is 

 

2
2 2 21 2

2
2 1

16
( )

8 7

C r
N B r r

r

 

 
     . (7) 

The solution for the functions that determine the spin connection is as follows 

 

1 2 3

1
0

2

20
4

1

0,

,

1 2 .

A A A

A r C

A r









  

 

 

 (8) 

Constants Cand r+ characterize the solution. For simplicity, we take C = 0 in the 

following analysis of the properties. This solution exists only if the constraint between 

parameters holds 

 
2
1 0 212 0    , (9) 

and if the ratio 1/2  is negative. From the formula (7) we see that the metric of the black 

hole is asymptotically Anti de Sitter. 

3.4. Properties of the solution 

For the definitions and properties of curvature and torsion invariants see reference 

(Obukhov, 2006). Now we will give the results for the most important invariants of the 

black hole. 

The scalar Cartan curvature is of the form 

 1

2

2
R




  . (10) 
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The scalar Riemann curvature is given by 

 

8
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2 8
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2
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 

 
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The quadratic torsion invariant is 

 

8
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3
( ) (1 )
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r
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
    . (12) 

From these invariants, we conclude that there is a singularity in the center of the black 

hole. An interesting point is that singularity is not visible in the Cartan curvature invariant but 

in the torsion invariant, which is an unusual property. 

Next, we turn to the thermodynamics of the black hole and give the results for its 

temperature and entropy. 

The temperature of the black hole is given by 

 
2

1

2

( )

4 4

N
T r



 



   . (13) 

The proportionality of the temperature to the radius of the event horizon is not common 

for the black holes with a spherical topology of the event horizon, except in the case of 

three dimensions, and it is a nice illustration that interesting things can happen in 

alternative theories of gravity. 

The entropy is calculated in the semi-classical level, by calculating the Euclidean partition 

function which has an interpretation of free energy, and it is concluded that it vanishes 

 0S  . (14) 

This result is very interesting because it is drastically different from the one in general 

relativity. As such it is a good check for any entropy formula. Also, because it is expected 

that the explanation of black hole microstates is universal, it is puzzling why this solution 

has such a low number of states compared to black holes in general relativity. 

To every Killing vector i, we can associate conserved charge Q(i), the charges are 

calculated in the original reference using the Nester formula (Nester, 1991) and it is 

obtained that all charges are zero 

 ( ) 0iQ   . (15) 

4. BLACK RING 

This section is based on the results obtained in the reference (Cvetković and Simić, 

2016). 

4.1. Ansatz 

The search for a new class of solutions is inspired by Canfora et al. (Canfora et al., 

2007), who found a solution of the type AdS2  S
3
 when the coefficients in the Lagrangian 

satisfy the relation 
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 2
1 0 212 0    . (16) 

We shall now construct another class of solutions of the ”complementary” type 
3 
 S

2
, 

where 
3
 is a three-dimensional space-time and S

2
 is a two-dimensional sphere. We start 

from the following ansatz for curvature 
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1
,
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R e e
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 (17) 

and torsion 

 
3 4

,

0.

a abc
b cT p e e

T T



 
 (18) 

In the ansatz we have three real number q, r0 and p which are a priory arbitrary before 

substituting the ansatz in the equations of motion (1) and (2), which will lead to a relation 

among them. We decomposed the indices a,b,c... = 0,1,2 and 3 and 4 which are written 

explicitly, and we also defined 34abc abc  . 

4.2. Solution 

The three-dimensional space-time remains arbitrary after substituting the ansatz in the 

equations of motion, but there is only one reasonable black hole solution in this number 

of dimensions which is a BTZ black hole with(-out) torsion (Garcia et al., 2003; 

Obukhov, 2003). Because of this, the vielbein takes the following form. 
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3 4
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, , ( ),

, ,

e Ndt e N dr e r d N dt

e r d e r sin d



  

   

 
 (19) 

where the functions N and N are given by 
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2

2 2 2
2 ,

r j j
N m N

l r r
     . (20) 

We introduced the AdS radius in the following manner 

 
2

2

1
q

4

p

l
  , (21) 

and m and j are parameters of the solution which are related to mass and angular 

momentum, respectively. 

The spin connection is of the form 

 
34

,
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cos ,

ab ab abc
c

p
e

d

  

  

 

 

 (22) 
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where  
ab

 is the Riemann spin connection given by the following expressions 
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As previously stated, the equations of motion introduce a relation among the parameters 

in the ansatz, which reads 

 
2

0

1

2
q

r
  . (24) 

Also, as usual for the solutions with torsion of Lovelock gravity, a solution does not exist 

generally but in the sector of the theory in which a constraint between the coefficients in 

the Lagrangian holds 

 2
1 0 2α 8α α 0  . (25) 

4.3. Properties of the black ring 

The black ring as the product manifold of a BTZ black hole and a two-dimensional 

sphere inherits their Killing vectors. The complete set of Killing vectors consists of those 

originating from the BTZ black hole 

 0 1  , t      , (26) 

and those inherited from the sphere 

 2 3 4  ,   sin cot cos ,  cos cot sin                      . (27) 

For every Killing vector, we have conserved charge Q(i), the charges are calculated 

in reference (Cvetković and Simić, 2016) using the Nester formula and, as in the previous 

solution, it is concluded that all the charges are zero 

 ( ) 0iQ   . (28) 

This is even more striking than in the case of a spherically symmetric black hole for 

which, because it does not rotate, only zero mass was an unexpected result. Namely, the 

black ring is a five-dimensional generalization of a rotating BTZ black hole which has 

non-zero angular momentum in three dimensions but, as we see, the black ring has a 

vanishing angular momentum nonetheless. 
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5. CONCLUSION 

In this paper, we gave a short review of two black hole solutions that exist in five-

dimensional Lovelock gravity. 

First, we reviewed a spherically symmetric black hole. We explained what its Killing 

vectors are and what is the most general form of the metric and spin connection 

compatible with them. Afterward, we presented the solution itself and gave its properties. 

An interesting property is that all conserved charges vanish, which means that the mass 

of this solution is zero, too. This is a peculiar property which is in conflict with our 

intuition that black holes are made by the collapse of ordinary matter. Another peculiar 

property of this black hole is zero entropy. The vanishing entropy in the semi-classical 

approximation does not imply that the entropy calculated in full quantum theory is zero. 

It tells us that the entropy is much smaller than expected by the factor 1/ G , which 

immediately leads to the conclusion that this black hole has far fewer microstates than the 

usual black hole with non-vanishing entropy in the semi-classical approximation. For this 

reason, the solution is very interesting as a consistency check of every proposal for the 

black hole micro-states. 

Second, we constructed a black ring with torsion which is a black hole which horizon 

of events does not have a spherical topology but the topology S
1
  S

2
. This is the reason 

for its name. The black ring also has all charges equal to zero, including its mass and 

angular momentum. This is, again, counter-intuitive, even more, if we take into account 

that this solution is nothing more than a rotating BTZ black hole times a two-dimensional 

sphere. Because a rotating BTZ black hole possesses mass and angular momentum, it is 

not clear what makes black rings so different from it. 

REFERENCES  

Aros, R., Troncoso, R. and Zanelli, J., 2001. Phys. Rev. D63, [hep-th/0011097], DOI: 10.1103/PhysRevD.63.084015. 

Boulware, D. G. and Deser, S., 1985. Phys. Rev. Lett. 55, 2656. 
Camanho, X. O. and Edelstein, J. D., 2013. Class. Quant. Grav. 30, arXiv:1103.3669 [hep-th], DOI: 10.1088/0264-

9381/30/3/035009. 

Canfora, F., Giacomini, A. and Willinson, S., 2007. Phys. Rev. D76, 044021, arXiv:0706.2891 [gr-qc], DOI: 
10.1103/PhysRevD.76.044021. 

Canfora, F., Giacomini, A. and Troncoso, R., 2008. Phys. Rev. D77, 024002, arXiv:0707.1056 [hep-th], DOI: 

10.1103/PhysRevD.77.024002. 
Cai Rong-Gen and Ohta, N., 2006. Phys. Rev. D74, 064001, [hep-th/0604088], DOI: 10.1103/PhysRevD.74.064001. 

Cai Rong-Gen, Caob, Li-Ming and Ohta, N., 2010. Phys. Rev. D81, 024018, [hep-th/0911.0245], DOI: 10.1103/ 

PhysRevD.81.024018. 
Cvetković, B. and Simić, D., 2016. Phys. Rev. D94, no.8, 084037, arXiv:1608.07976 [gr-qc], DOI: 10.1103/ 

PhysRevD.94.084037. 

Cvetković, B. and Simić, D., 2018. Class. Quant. Grav. 35, no.5, 055005, arXiv:1708.08766[gr-qc],  DOI: 
10.1103/PhysRevD.96.064031. 

Dotti, G., Oliva, J.  and Troncoso, R., 2007. Phys. Rev. D76, 064038, arXiv:0706.1830 [hep-th], DOI: 10.1103/ 

PhysRevD.76.064038. 
Emparan, R. and Reall, H. S., 2002. Phys. Rev. Lett. 88, [hep-th/0110260], DOI: 10.1103/PhysRevLett.88.101101. 

Emparan, R. and Reall, H. S., 2008. Living Rev. Rel. 11, arXiv:0801.3471 [hep-th], DOI: 10.12942/lrr-2008-6. 

Garcia, A., Hehl, F. W., Heinecke, C. and Macias, A., 2003. Phys. Rev. D67, 124016, DOI: 10.1103/ 
PhysRevD.67.124016. 

Garraffo, C. and Giribet, G., 2008. Mod. Phys. Lett. A23, 1801, arXiv:0805.3575 [gr-qc], DOI: 10.1142/ 

S0217732308027497. 



78 D. SIMIĆ 

Gregory, R. and Lafflamme, R., 1993. Phys. Rev. Lett. 70, 2837, [hep-th/9301052], DOI: 10.1103/PhysRevLett. 

70.2837. 
Horowitz, G. T. and Strominger, A., 1991. Nucl. Phys. B360, 197, DOI: 10.1016/0550-3213(91)90440-9. 

Kastor, D. and Mann, R. B., 2006. JHEP 0604, 048, [hep-th/0603168], DOI: 10.1088/1126-6708/2006/04/048. 

Lovelock, D., 1971. J. Math. Phys. 12, 498, DOI: 10.1063/1.1665613. 
Lovelock, D., 1972. J. Math. Phys. 13, 874, DOI: 10.1063/1.1666069. 

Maeda, H., Willison, S. and Ray, S., 2011. Class. Quant. Grav. 28, 165005, arXiv:1103.4184 [gr-qc], DOI: 

10.1088/0264-9381/28/16/165005. 
Nester, J. M., 1991. Mod. Phys. Lett. A6, 2655, DOI: 10.1142/S0217732391003092. 

Obukhov, Y. N., 2003. Phys. Rev. D68, 124015, DOI: 10.1103/PhysRevD.68.124015. 

Obukhov, Yu. N., 2006. Int. J. Geom. Meth. Mod. Phys. 3, 95, DOI: 10.1142/S021988780600103X. 
Ray, S., 2015. Class. Quant. Grav. 32, no.19, 195022, arXiv:1505.03830 [gr-qc], DOI: 10.1088/0264-

9381/32/19/195022. 

ZANIMLJIVE PETODIMENZIONALNE CRNE RUPE  

U ovom radu ćemo proučiti dve crne rupe koje su rešenja petodimenzionalne Lavlokove 

gravitacije. Ova rešenja su karakterisana nenultom torzijom i interesantnom osobinom da su svi 

njihovi očuvani naboji nula. Prvo rešenje je sfernosimetrična crna rupa sa torzijom koja takođe ima 

nultu entropiju u semiklasičnoj aproksimaciji. Drugo rešenje je crni prsten, koji je petodimenzionalna 

generalizacija BTZ crne rupe sa torzijom u tri dimenzije. 

Ključne reči: crna rupa, torzija, alternativne teorije gravitacije 


