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Abstract. A way to search for a signal of space-time noncommutativity is to study a 

quasinormal mode spectrum of the Reissner-Nordström black hole in the presence of 

noncommutativity. In this paper, we chose a particular NC deformation defined by the 

angular twist. We investigate a noncommutative (NC) deformation of a complex scalar 

field, minimally coupled with a classical (commutative) near extremal Reissner-

Nordström background. The theory is manifestly invariant under the deformed       

gauge symmetry group. Using the EOM for the NC complex scalar field in RN 

background, the QNM spectrum is calculated for a particular range of parameters 

coresponding to the near extremal limit.  
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1. INTRODUCTION 

The ringdown phase of a black hole (the phase when a black hole emits gravitational 

waves) may broadly be divided into three stages: a short period of strong initial outburst 

of radiation, which is then followed by a long period of damped oscillations, dominated 

by quasi-normal modes (QNMs). The third stage is the so-called late time tales.  

The feature of QNMs that they do not depend on the details of a perturbation but only 

on the parameters of a black hole makes them a convenient carrier of information on the 

properties of black holes. Black hole QNMs (Regge and Wheeler, 1957) also provide key 

signatures of gravitational waves. Moreover, the recent experimental discovery of 

gravitational waves including the ringdown phase arising from black hole mergers 

(Abbott et al., 2016) has opened up new possibilities for the observation of QNMs.  
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Besides carrying the intrinsic information about black holes, it is reasonable to 

assume that QNMs may also carry information about the properties of the underlying 

space-time structure. In particular, if the underlying space-time structure is deformed in 

such a way that it departs from the usual notion of the smooth space-time manifold, then 

this deviation should also in some way be imprinted in the QNMs’ spectrum. 

QNMs spectra have been analyzed in the presence of the noncommutative (NC) 

structure of space-time (Giri, 2007; Gupta et al., 2015). 

Our goal in this paper is to study the quasi-normal modes of an NC scalar field in a 

fixed background of the Reissner-Nordström (RN) black hole. More precisely, we fix a 

particular NC deformation of space-time by "turning on" the twist (3). After fixing the 

NC deformation in our model, we study the propagation of scalar and      gauge fields 

in the non-propagating geometry of a RN black hole. In particular, we study the QNMs 

spectrum of the charged massive scalar field. The RN geometry is non-dynamical and, 

unlike the scalar and gauge field, it does not feel the deformation.  

In the next sections, we introduce the NC space-time and we construct the NC       

gauge theory coupled with a charged scalar field. Then we use the Seiberg-Witten map 

(Seiberg and Witten, 1999) to expand the NC fields in terms of the corresponding 

commutative fields and obtain an expanded action. The action and the corresponding 

equations of motion are expanded up to first order in the NC parameter  . We calculate 

the scalar field equation of motion in the RN background. This equation is our starting 

point for discussing QNMs solutions in the extremal RN case in Section 4. Both 

numerical and analytic solutions show that there is a Zeeman-like splitting of the QNMs 

frequencies for a fixed angular momentum number  . Solutions depend on the magnetic 

number   in such a way that   always couples with the NC parameter  . 

 2. NONCOMMUTATIVE SPACE-TIME FORM THE ANGULAR TWIST 

The Reissner-Nordström (RN) black hole is a well-known solution to Einstein 

equations. It represents a charged non-rotating black hole and it is given by  
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where   is the mass of the RN black hole and   is the charge of the RN black hole. The 

RN space-time is static and spherically symmetric, and it has four Killing vectors. In 

particular,       and               are the Killing vectors that will be of 

importance in the paper. 

To define NC deforming of space-time we choose a Killing twist  

     
 

 
          (2) 

where     is a constant skewsymmetric matrix     (
  
   

)  with a small NC 

parameter  . Indices        , while      ,            are commuting vector 

fields,          . We call (3) "angular twist" because the vector field        

    is nothing else but a generator of rotations around  -axis, that is      . In 

particular, the twist (5) does not act on the RN metric and it does not act on the functions 
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of the RN metric because    and    are Killing vectors for the RN metric. In this way, 

we ensure that the geometry remains undeformed. The  -product of functions follows 

from (2) and is given by 

        
  {   }   

    
  

 
                                       

(3) 

This  -product is noncommutative, associative, and in the limit    , it reduces to the 

usual point-wise multiplication. In this way, we obtain the noncommutative algebra of 

functions, i.e. the noncommutative space-time. In the special case of coordinates, the  -

commutation relations are  

                            (4) 

while all other coordinates commute.  

We have already mentioned that the vector field    is nothing else but the generator 

of rotations around the  -axis. Let us rewrite the twist (3) in the spherical coordinate 

system  
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with        . Note that the twist has the same (5) form in the cylindrical coordinate 

system. 

Now we rewrite all the formulas for the  -product of functions and the differential 

calculus in the spherical coordinate system. Here we present the most important results, 

as the rest can be calculated easily:  
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Note that now             . 

In the case of the Hodge dual, we have to use the definition of the Hodge dual in 

curved space-time. This leads to 
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that is, we obtained the commutative (undeformed) Hodge dual. In this calculation, we used 

(7). In addition, we used the fact that the metric tensor     does not depend on     

coordinates and therefore             for an arbitrary function  . In a more general case, 

when the twist   is not a Killing twist for the space-time metric    , we cannot use this 

definition of the Hodge dual, since in general             and                . 

These will spoil the covariance of the     under the NC gauge transformations and make the 
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construction of NC gauge invariant action complicated (see Aschieri and Castellani 2013 for a 

detailed discussion). 

In what follows, we will work with the twist (5) and we will develop the NC scalar 

      gauge theory on the RN background. 

3. SCALAR       GAUGE THEORY 

The twist (5) allows us to study the behavior of an NC scalar field in the gravitational 

field of a Reissner-Nordström black hole. 

Let us start from a more general action, describing the NC       gauge theory of a 

complex charged scalar field on an arbitrary background. The only requirement on the 

background is that    and    are Killing vectors. 

If a one-form gauge field  ̂   ̂      is introduced into the model through a 

minimal coupling, the relevant action becomes  

 
   ̂  ̂  ∫     ̂    ̂   ̂         ̂    ̂   ̂  

 ∫  
  

  
 ̂   ̂                     

(9) 

Here   is the mass of the scalar field  ̂, while its charge is  . 

In order to write the mass term for the scalar field  ̂ geometrically, we introduced 

vierbein one-forms      
      and          

    
 . In index notation, the action is 

of the form  

    ∫      √   (       ̂     ̂     ̂   ̂)  (10) 

The scalar field  ̂  is a complex charged scalar field transforming in the fundamental 

representation of NC      . Its covariant derivative is defined as  

    ̂     ̂    ̂   ̂  

The background gravitational field     is not specified at this time. However, it is 

important that its Killing vectors are    and    since only in that case the action (10) has 

this simple form. Note that  -products in √           can all be removed since the 

twist (5) does not act on the metric tensor. 

One can check that the action (10) is invariant under the infinitesimal       gauge 

transformations defined in the following way: 

 
   ̂    ̂   ̂  

   ̂     ̂   [ ̂   ̂ ]  

         

(11) 

with the NC gauge parameter  ̂. 
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3.1. Seiberg-Witten map 

There are different approaches to the construction of NC gauge theories. In this paper, 

we use the enveloping algebra approach (Jurčo et al., 2001) and the Seiberg-Witten (SW) 

map (Seiberg and Witten, 1999). The SW map allows us to express NC variables as 

functions of the corresponding commutative variables. In this way, the problem of charge 

quantization in       gauge theory does not exist. In the case of NC Yang-Mills gauge 

theories, the SW map guarantees that the number of degrees of freedom in the NC theory 

is the same as in the corresponding commutative theory. In other words, no new degrees 

of freedom are introduced. 

Using the SW-map, NC fields can be expressed as functions of the corresponding 

commutative fields and can be expanded in orders of the deformation parameter  . 

Expansions for an arbitrary Abelian twist deformation are known to all orders (Aschieri 

and Castellani, 2012). Applying these results to the twist (5), expansions of fields up to 

first order in the deformation parameter   follow. They are given by:  

  ̂    
 

 
                (12) 

  ̂     
 

 
     (        )  (13) 

The      covariant derivative of   is defined as               in the case of      

gauge theory. It is important to note that the coupling constant   between fields   and 

  , the charge of  , is included into   , namely       . 

3.2. Expanded actions and equations of motion 

Using the SW-map solutions and expanding the  -products in (10) we find the action 

up to first order in the deformation parameter  . It is given by 
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(14) 

Varying the action with respect to   , we obtain the equation of motion for the field   

 

                   
         

 
  

 
        

 

 
                           

       

                       
                             

      

3.3. Scalar field in the Reissner-Nordström background 

Finally, let us specify the gravitational background to be that of a charged non-

rotating black hole, the Reissner-Nordström (RN) black hole. Since we are interested in 

the QNMs of the scalar field, we will consider the equation (15) and assume that the 

gravitational field     and the      gauge field    are fixed to be the gravitational field 

and the electromagnetic field of the RN black hole. 
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Let us introduce     
   

 
 

   

  , where   is the mass of the RN black hole, while 

  is the charge of the RN black hole. 

The RN black hole is non-rotating, therefore the only non-zero component of the gauge 

field is the scalar potential  

     
  

 
  (16) 

 The corresponding electric field is given by  

     
  

    (17) 

Remembering that the only non-zero components of the NC deformation parameter 

    are             we obtain the following equation  
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Note that   is the usual Laplace operator. 

In order to solve this equation, we assume an ansatz  

                           
        (19) 

with the spherical harmonics   
      . Inserting (19) into (18) leads to an equation for 

the radial function         

 
       

 

 
   

  

 
       

      

  
 

 

 
   

  

 
          

    
  

  
  

  

 
 

   

  
                

(20) 

The zeroth order of this equation corresponds to the equation for the radial function     

in Hod (2010) and Richartz and Giugno (2014). 

4. SOLUTIONS FOR QNMS 

We are interested in a special solution to the equation (20), the quasi-normal mode 

solution with proper boundary conditions mentioned in Introduction. In order to find the 

spectrum of QNMs in our model, let us firstly rewrite the equation (21) in a more 

convenient way. 

Taking into account that the outer and inner horizon of the RN black hole are given 

by       √        , we introduce the following variables and abbreviations  
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Then the radial equation of motion (21) reduces to  

 
      

   

   
          

  

  

      

      
 
  

  
             

        

 
    

           
  
 

  

  
       

    
    

  
       

    
    

  
       

      

(23) 

The strategy that we adopt here is similar to that in Hod (2010). It allows us to 

analyze the equation (23) in two different regions, one being relatively far from the 

horizon,    , and the other being relatively close to the horizon,    . It is important 

to emphasize that these two regions have to be chosen in such a way as to ensure that 

their region of a common overlap exists (or is likely close to exist). The restriction to a 

near extremal limit that we make, as well as an appropriate choice for a range of the 

system parameters makes this possible. 

The described procedure leads to a condition for the QNM frequency    
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(24) 

In general, this condition cannot be solved analytically. In what follows, we present 

some numerical results for the QNMs frequencies, obtained by Wolfram Mathematica 

and resulting from the analytic condition (24). In particular, we shall be concerned with 

the fundamental quasi-normal mode (the lowest absolute value of the imaginary part). 

Using some more additional approximations, it is possible to find an analytic solution 

(Dimitrijević Ćirić et al. 2018) 

We give separately the dependence of the fundamental QNMs frequency   (i.e. its 

real and imaginary part) on the charge of the scalar field    We plot the results for 

            , corresponging to               . For simplicity, we set    . 

When deriving (61) we used the approximation that the NC deformation parameter   is 

of the same order as the extremality  . Therefore,        corresponds to the case 

            . We assumed that the mass of the scalar field is fixed at       . 

  

Fig. 1 Dependence of Re   on the charge q 

of the scalar field with the mass 

µ = 0.05, l = 1. 

Fig. 2 Dependence of Im   on the charge q 

of the scalar field with the mass 

µ = 0.05, l = 1. 
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It needs to be said that the calculations leading to the results depicted in Figures  -  

were carried out
1
 for    , as well as for the three values of    namely       . 

However, as readily seen from the figures, the curves corresponding to three different 

values of   cannot be distinguished, actually. Nevertheless, this does not mean that these 

three curves coincide identically. On the contrary, they are not identical, as can be easily 

verified by simply improving the resolution and by letting the graphs show a higher level of 

details. For that purpose, we also plot the differences of frequencies              , 

which indeed appear to be nonvanishing. In this regard, we notice that the deformation   

and the azimuthal quantum number   always come in pair, implying that the mode with 

    actually corresponds to the limit      that is, the absence of deformation. It is 

therefore clear that the differences    encode the effect of a space-time deformation.  

 

 

Fig 3 Dependence of frequency splitting 

of Re   on the charge q of the scalar 

fieldwith the mass µ = 0.05, l = 1. 

Fig 4 Dependence of frequency splitting 

of Re   on the charge q of the scalar 

field with the mass µ = 0.05, l = 1. 

The NC effect can be described as a Zeeman-like splitting in the spectrum, manifested 

by the coupling between the deformation parameter   and the azimuthal (magnetic) 

quantum number  . In Figures   and  , we plot the dependence of frequency splitting of 

the frequency    showed in Fig. 1 and Fig. 2 with               , of the 

real/imaginary part of  . The green line represents             , while the red 

line represents              . 

The frequency splitting is small, as expected. To have an idea of how small it is, one can 

estimate      for the imaginary part of   in the case of   dependence from Figures   and   

and obtain          . However, the effect is very important qualitatively, since it 

predicts a Zeeman-like splitting of the QNMs spectrum in the presence of noncommutativity. 

The frequency splitting manifests itself as a coupling between the deformation 

parameter   and the azimuthal (magnetic) quantum number  . At first glance, a similar 

behaviour can be found in the QNMs spectrum of the Kerr black hole evaluated in the 

limit of slow rotation (Konoplya and Zhidenko, 2014), where the magnetic quantum 

number   couples with the black hole angular momentum  . The described feature would 

suggest the existence of a specific kind of duality between noncommutative and non-

rotating systems on one side, and standard commutative and rotating systems on the other 

                                                           
1 Note that     corresponds to a trivial situation where NC effects disappear. 
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side. This duality has already been observed in some lower dimensional systems (Gupta 

et al. 2015) However, a closer inspection shows that these two spectra are not equivalent 

or dual to each other, since in the case of a rotating black hole in linear approximation, in 

addition to the term proportional to   , there is another contribution, proportional to   
alone, which is nonzero for    . This is different from the dependence on the 

noncommutative scale   encountered in our analysis. This shows that a true relationship 

between these two settings (commutative and noncommutative) still needs to be found 

and we plan to address this problem in future work.  
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SKALARNE KVAZINORMALNE MODE PRIBLIŽNO 

EKSTREMALNE RAJSNER-NORDSTROMOVE CRNE RUPE 

U NK PROSTORVREMENU 

Put kojim tragamo za signalom da je prostorvreme nekomutativno je da proučavamo spektar 

kvazinormalnih moda Rajsner-Nordstromove (RN) crne rupe u prisustvu nekomutativnosti. U ovom 

radu biramo specifičnu NK deformaciju definisanu sa angularnim tvistom. Proučavamo 

nekomutativnu deformaciju kompleksnog skalarnog polja koje je minimalno spregnuto sa 

komutativnom približno ekstremalnoj RN pozadini. Teorija je manifestno invarijantna na        

gradijentne transformacije. Koristeći jednačine kretanja za NK kompleksno skalarno polje u 

pozadini RN crne rupe, spektar kvazinormalnih moda je izračunat za određen opseg parametara 

koji odgovaraju približno ekstremalnoj limitu.  

Ključne reči: kvazinormalne mode, približno ekstremalna RN crna rupa, NK skalarno polje 

 
 


