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Abstract. The electrochemical behavior of a biologically important heterocyclic compound 

quinoxaline (QUI) was investigated by cyclic voltammetry (CV) in solutions of differing pH, 

using a glassy carbon electrode (GCE). The reduction of QUI occurs as a quasi-reversible 

reaction in acid medium, reaching reversibility in alkaline solutions. The kinetic parameters 

of the electrode process such as αnα, diffusion coefficient (D) and heterogeneous rate 

constant (ks), were evaluated and discussed. Redox mechanism of QUI was proposed on the 

basis of experimental results. Reduction process involves a transfer of two electrons and two 

protons at the pyrazine ring of QUI forming a dihydro-derivative. In acid solutions, the 

product of QUI reduction undergoes irreversible oxidation in a one-electron process. The 

electrode processes was found to be diffusion controlled. 

Key words: Quinoxaline, cyclic voltammetry, glassy carbon electrode, redox 

mechanism, kinetic parameters 

1. INTRODUCTION 

Heterocyclic compounds (HCs) have drawn the utmost attention of researchers due to 
their extensive practical applications. Synthetic heterocycles are widely used as 
fungicides, herbicides, antioxidant and flavoring agents [1]. Not only some natural drugs 
i.e. quinine, theophylline, theobromine, emetine, atropine, and morphine [2-5]have 
heterocyclic cores in their structure, HCs are lead structures for the designing synthetic 
drugs [6]. Many of nitrogen containing heterocyclic compounds have been reported to be 
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carcinogenic or increase the carcinogenic activity [7]. Quinoxaline (QUI), also called 
benzopyrazine (Fig. 1.) is heterocyclic compound containing fused benzene and pyrazine 
rings. Many important biologically active compounds are derivatives of this heterocycle. 
It is known antibiotic activity of actinomycin, lomacine and actinolite is related to the 
presence of quinoxaline ring in their structures [8]. Similar is true for active principle of 
some preparations for smoking cessation (e.g. varenicline) and antiglaucoma agents 
(brimonidine) [9,10]; QUI related compound has been recently used as an antineoplastic 
drug [11] in cancer treatment. 

The electrochemical behavior of QUI was studied using mercury electrode [12-14]. 
According to literature [12], the electrode reaction corresponding to the two polarographic 
reduction waves of quinoxaline at DME (1,2-dimetoxyetane) is ascribed to the reduction of two 
C=N bonds of the quinoxaline ring. In two consecutive one electron steps, C=N bonds in QUI 
are reduced to 1,4-dihydroquinoxaline which further undergoes H

+
- catalyzed chemical 

transformation, and after the addition of two protons and two electrons it is reduced to final 
product – 1,2,3,4-tetrahydroquinoxaline. Murray and coworkers [13] showed that the critical 
factor in governing the reduction process of quinoxalines is the pH of the solution. Overall 
process is possible only in strong acid solution, while in neutral and alkaline medium 
dihydroquinoxaline is formed as a final product which can be reversibly oxidized back to QUI. 

However, as the use of mercury electrode is limited to the negative potential range, 
the information obtained allowed conclusions only about the reduction of QUI. There are 
no literature data about QUI oxidation and electrochemical behavior at solid electrodes. 
To bridge this gap, the present study is aimed at the investigation of the QUI redox 
processes using cyclic voltammetry at a glassy carbon electrode in a wide pH range, and 
evaluation of kinetic parameters of its redox reactions.  

2. MATERIALS AND METHODS 

2.1. Instrumentation 

The voltammetric measurements were performed with an µAutolab analyzer 

(EcoChemie, Utrecht, The Nederlands) running with the GPES 4.9 software. Three-electrode 

system was employed: glassy carbon electrode (GCE produced by CH Instruments, Inc., 

USA, d = 3 mm (A=0.071cm2)) as working electrode, an Ag/AgCl as reference electrode 

(3 moldm
-3 

KCl) and Pt-auxiliary electrode. 

A SCALTEC SBC 31 balance, Ultrasonic 

bath Iskra UZ 4R and Radiometer pH meter, 

PHM 220, with combined pH electrode 

Radiometer GK2401B and appropriate standard 

buffer solutions were used. 

The GCE was manually polished using the aqueous slurry of Al2O3 powder (particle 

size 0.05 µm) on a smooth polishing pad before each experiment. The electrode was 

rinsed with bidistilled water and then sonicated in absolute ethanol for 2 min. 

2.2. Chemicals 

Quinoxaline standard was produced by Sigma Aldrich. A stock solution of 210
-3 

moldm
-3 

QUI was prepared in bidistilled water. The solutions of different concentrations were obtained 
by diluting the stock solution with different supporting electrolytes [15], and prepared from 

 

Fig. 1 Structure of quinoxaline (QUI) 
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the chemicals of analytical grade quality. The following supporting electrolytes were used: 
HCl + KCl for pH 1.9, 2.2; acetate buffer for pH 3.6, 4.6, and 5.4; phosphate buffer for pH 
6.2, 7.0 and 8.0, and ammonia buffer for pH 8.5, 9.2 and 10.2. Ionic strength of all solutions 

was adjusted to 0.1 moldm
-3

. All the experiments were done at room temperature (25  1 C). 

2.3. Procedures 

An appropriate volume of supporting electrolyte of different pHs were placed in 
electrochemical cell, deaerated for 10 minutes with high purity nitrogen and QUI stock 

solution was added to make its final concentration of 110
-4 

moldm
-3
 in a total volume of 15.0 

mL. The cyclic voltammograms were recorded between -1.6 V and + 1.35 V, at scan rate 

ranged 10  100 mVs
-1

. The experimental parameters for DPV were: pulse width 50 ms, scan 
rate 5 mVs

-1
 and pulse amplitude 50 mV. 

3. RESULTS AND DISCUSSION 

3.1. Reduction and oxidation processes 

The redox behavior of 110
-4
 moldm

-3
 QUI was initially studied by CV in 0.1 

moldm
-3

 acetate buffer pH 5.4. The cyclic voltammograms were recorded in three successive 
scans starting from 0.0V, towards -1.35 V and reversing to the positive potential limit of +1.45 
V, at a scan rate 100 mVs

-1
. On the first negative-going scan, one cathodic peak (Ic) was 

obtained at Ep,Ic= -0.60 V. Changing the scan direction, one main anodic peak (Ia) appeared at 
Ep,Ia=-0.55 V and one additional anodic peak (IIa) at potential Ep,IIa= +0.15 V were noticed. 
Recording the cyclic voltammograms in the opposite direction starting from 0.0 V going to 
+1.45 V and reversing to -1.35 V under the same conditions, the second anodic peak (IIa) was 
not present in the first scan, but it appeared in the second and third scan (Fig. 2A.). All 
recorded CVs at different pH values indicate the same behavior: the irreversibility of process 
represented by second anodic peak (IIa), and the partial reversibility (increasing with pH) of 
the process represented by cathodic and first anodic peaks (Ic and Ia). Some representative 
CV curves at different pH values are presented in Figure 2B. 

 

Fig. 2 CV of 110
-4 

moldm
-3

 QUI at scan rate of ν=100mVs
-1

; (A) pH 5.4; (---) first, () 

second and () third scan in the positive direction; (B) 1 - pH 3.6; 2 - pH 6.2;  

3 - pH 8.0 and 4 - pH 10.2. 
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The reduction peak (Ic) exists at all investigated pH values (from 2.0 to 10.0), and the 
peak potential was shifted to more negative values with increasing pH (Fig. 3A).The 

linear dependence of Ep vs. pH was obtained following the equations: Ep,Ic= -0.339 V  
0.051 V × pH, and the slope of 51 mV suggested the same number of electrons and 
protons involved in the reduction process.  

For a diffusion-controlled system difference between peak potential and half-height 
peak potential is equal to |Ep − Ep1/2| = 47.7/(αnα) [16], and the obtained values are given 
in Table 1. Considering the charge transfer coefficient, α = 0.5 for irreversible and α = 1.0 
for reversible process, the number of the transferred electrons is calculated and the 
obtained values are in the range from 1.59 to 2.38, depending on pH, what leads to the 
conclusion that two electrons are involved in the reduction process. 

The current of the cathodic peak Ic is pH dependent. After recording successive scans 
in the same solution without cleaning the electrode surface, the currents of cathodic peak 
were not changed (Figure 2A), suggesting that electrode reaction product was not 
adsorbed at the electrode surface. 

Cyclic voltammograms were recorded at different scan rates ranged from 10 to 
100 mVs

-1
. A linear dependence of log Ip,Icvs. log ν was obtained at all investigated pH. 

The following regression equations, log Ip,Ic= 1.025 + 0.341 log ν (r = 0.9881), log Ip,Ic= 
1.105 + 0.408 log ν (r = 0.9877), log Ip,Ic= 1.191 + 0.496 log ν (r = 0.9922) and log Ip,Ic= 
1.031 + 0.456 log ν (r = 0.9949) were obtained at pH 1.9, 3.6, 6.2 and 8.0 respectively. 
The corresponding slopes which were little less or very close to 0.5 what is the theoretical 
value for the diffusion controlled processes [17-19], once again showed that the nature of 
the process is diffusion controlled without the influence of the adsorption. 

 

Fig. 3 The influence of pH on: Ic (■), Ia (●) and IIa (▲) CV peak potential (A) and peak 

current (B) for 1 × 10
-4 

moldm
-3

 QUI in different buffer solutions; scan rate 100 mV s
-1
. 

The oxidation peak (Ia) exists also at all investigated pH values, and the peak potential 
was shifted to more negative values with increasing pH. The linear dependence of Ep vs. pH 

(Ep,Ia= -0.237 V  0.057 V × pH) with slopes of 57 mV, again suggested the same number 
of electrons and protons involved in the oxidation process. The peak potential difference 
between peaks Ic and Ia of ΔEp ~ 80 mV, and high diversity in peak current intensity (Ip,Ic ~ 
2-4 × Ip,Ia at pH ≤ 7.0) indicate a quasi-reversible reaction in acidic and neutral solutions. 



 Evaluation of Kinetic Parameters and Redox Mechanism of Quinoxaline at Glassy Carbon Electrode 59 

These differences were decreased at pH ≥ 8.0 (ΔEp ~ 30 mV, and Ip,Ic ~ Ip,Ia) (Fig 3A, 3B), 
leading to the conclusion that the reaction is reaching reversibility in alkaline medium. 

Second oxidation peak (IIa) is present at pH ≤8. Results indicate that the process is 

irreversible and diffusion controlled. When recording the cyclic voltammograms starting 

from 0.0 V, going to positive potentials, and reversing to negative, the anodic peak IIa 

was not present in the first scan, but it appeared in the second and third scan (Figure 2A). 

The influence of the pH on this peak potential resulted in the shift to the less positive 

potentials with increasing of pH: Ep,IIa = 0.383 V  0.049 V  pH (Figure 3A). The obtained 

slope is 49 mV per pH, which is close to the theoretical value of 59 mV per pH for the 

transfer of the same number of electrons and protons in an electrode process. The peak 

current intensity dramatically decreased at pH > 7.0 and further increasing of pH above 

pH 8, resulted in disappearance of this peak. This behavior is in accordance with the 

increase of the reversibility of the process represented with peaks Ic and Ia. In acid 

medium where reduction process is not fully reversible, peak IIa may correspond to the 

oxidation of QUI reduction product formed at the GCE surface during the first scan. 

After achieving the total reversibility of the redox process represented by peaks Ic and Ia, 

peak IIa could not be formed any more. 

3.2. Evaluation of kinetic parameters 

The effect of scan rate on the cyclic voltammetric response of QUI was monitored at 

different pHs. As already mentioned, for a diffusion-controlled irreversible and quasi 

reversible system |Ep − Ep1/2| = 47.7/(αnα), where α is the charge transfer coefficient, and 

nα the number of the electrons in the rate determining step [16]. The values of αnα were 

calculated for different pH values and the obtained values are presented in Table 1. 

Increasing the scan rate (ν), the current of peak Ic was increased linearly with the square 

root of ν. The value of diffusion coefficient (D) was evaluated from the slope of the plot of Ipc 

versus square root of scan rate [20], by applying the commonly used Randles-Sevcik equation 

(1). Calculus was performed by taking that n = 2 (see Sections 3.1. and 3.3.). 

    (       
 ) (α α)

          ν    (1) 

where, Ip represents peak current, n is the number of electrons transferred during the 

reduction, A the area of electrode in cm
2
, C concentration of compound in molcm

-3
, D 

diffusion coefficient in cm
2
s

-1
 and ν is scan rate in Vs

-1
.The values of obtained diffusion 

coefficient of QUI at different pH values are given in Table 1. 

Increasing the scan rate, the potential of peak Ic was slightly shifted to more negative 

values. Using αnα and D values obtained from the above equation, the rate constant (ks) 

of QUI was evaluated from the plot of Ep versus ln αnaν by employing equation (2) [21]. 
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the values of kswere determined, and summarized in Table 1. 
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Using the same method, parameters αnα, D and ks were determined for QUI 

oxidation process, considering n = 1 for second anodic peak, IIa. All results are presented 

in Table1. 

Anodic and cathodic shift in reduction and oxidation peaks induced by increasing 

scan rate indicated both processes to be controlled by mass transport. The shift in peak 

potential with increase in scan rate is the evidence for the irreversible nature of the redox 

process [22, 23].  

Table 1 Kinetic parameters for reduction and oxidation processes of QUI 

Peak pH Ep−Ep1/2 (V) αnα D (cm
2
s

-1
) ks(cms

-1
) n p 

Ic 

1.9 0.064 0.74 6.82×10
-6 

8.19×10
-12 

2 2 

3.6 0.058 0.82 7.84×10
-6 

5.41×10
-15 

2 2 

6.2 0.040 1.19 1.04×10
-5 

2.09×10
-19 

2 2 

8.0 0.030 1.59 6.51×10
-6 

1.71×10
-24 

2 2 

IIa 

1.9 0.076 0.63 1.32×10
-5 

6.81×10
-13 

1 1 

3.6 0.081 0.59 1.93×10
-5 

4.02×10
-6 

1 1 

6.2 0.090 0.53 1.64×10
-5 

4.23×10
-5 

1 1 

8.0 0.140 0.32 1.13×10
-7 

5.50×10
-5 

1 1 

Increasing the scan rate from 10 to 100 mVs
-1

, the potential of peak Ic was slightly 

shifted to more negative values, but the value of this shift decreased with the increasing 

of pH from 30 mV at pH 2 to 5 mV at pH 8. This is probably caused by the increasing 

degree of the reversibility of the process. On the other hand, the potential shift for peak 

IIa is much more pronounced reaching the value of 80 mV at pH 8, proving the 

irreversible nature of the process. 

These results are in accordance with the obtained values of the heterogeneous rate 

constants, ks. The very small value of ks for the cathodic peak Ic indicates the 

electrochemical process to be very slow, with decreasing of ks with increasing of the pH. 

At the same time, obtained values of ks for the oxidation process (IIa) are increasing. 

Heterogeneous rate constant (ks) is an important diagnostic criterion for predicting the 

nature of a redox process. The rate of the electron transfer reactions is strongly dependent 

on pH especially at systems in which chemical reactions precede or follow electron 

transfer provided such reactions that are either rapid or slow compared to the rate 

constant for electron transfer. This behavior is clearly evident in QUI redox mechanism. 

For reduction process represented with peak Ic which consumes two protons, it is evident 

that the values of the rate constant are increasing with the decrease of pH. 

In the case of QUI oxidation process which is accompanied with deprotonation, the 

lowest value of ks obtained at pH 1.9 is probably due to the high concentration of H
+
 ions 

present in such acid medium, making the deprotonation process hard. It is in accordance 

with the Ep,IIa vs. pH dependence. The peak potential is shifted to lower values with 

increased pH, suggesting that potential energy barrier height has the largest value in acid 

medium, making circumstantially the electron transfer the slowest at this pH. With the 

increasing of pH the rate of deprotonation increased. These results also indicate that at 

pH 1.9 the deprotonation might be the rate determining step. 
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3.3. Redox mechanism 

The obtained results showed that QUI undergoes redox process represented by peaks 

Ic and Ia, followed by the oxidation of the reduction product represented by peak IIa.  

To confirm the number of electrons involved in those processes and to propose 

effective redox mechanism, DPV of QUI was carried out at selected pH values in the 

range from 2.0 to 10.0. Average half peak width values for reduction (Ic) and oxidation 

(Ia) peaks were found to be 60 mV, and for oxidation IIa peak 120 mV. Number of 

electrons involved in each electrode process was determined at different pH values by 

using the equation 4 [24], 

      
      

α  
 (4) 

and the results are presented in Table 1. According to CV results (section 3.1.) the same 

number of electrons and protons are involved in all investigated processes and these are 

also listed in the Table 1. 

According to presented results, it seems that the reduction of QUI occurs as one step 

quasi reversible reaction in acid and neutral medium, reaching the reversibility in alkaline 

solutions, always involving the transfer of two electrons and two protons.  

According to the postulated reduction mechanism of varenicline [25], and brimonidine 

[10] at GCE it can be assumed that similar reversible reduction of QUI happens at the 

pyrazine ring moiety, forming a dihydro-derivative, as in the case of other compounds 

containing the pyrazine ring [26-30]. The proposed mechanism is presented in the 

Scheme 1. 

The appearance of the anodic peaks Ia and IIa in the reverse scan corresponds to 

oxidation of QUI reduction product: peak Ia is a consequence of the re-oxidation to QUI, 

and peak IIa is due to the formation of a hydroxy-derivative, which is present only in acid 

and neutral solutions. According to Scheme 1, an intermediary hydroxy-derivative (that 

would spontaneously isomerize to the more stable lactam-tautomer) is formed in a one-

electron irreversible reaction. The formation of this product has been reported for some 

compounds with similar structure [27]. 

 

Scheme 1 Electrochemical redox mechanism of QUI. 

4. CONCLUSIONS 

The present study has shown that QUI can be reduced and oxidized at a glassy carbon 

electrode. The reduction of QUI occurs as one step quasi reversible reaction in acid and 

neutral medium, reaching the reversibility in alkaline solutions, always involving the 

transfer of two electrons and two protons. The oxidation of its reduced product to a 

hydroxy-derivative was found to occur in an irreversible, pH dependent and diffusion 
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controlled manner involving the transfer of one electron and one proton. The values of 

diffusion coefficient and heterogeneous rate constant were successfully evaluated from 

voltammetric data at different pH values. Based on the obtained results, redox mechanism 

of the compound was proposed. The mechanism established could be very useful and 

recognizable for further studies of structurally similar quinoxaline based compounds, like 

some important biologically active compounds, antibiotics and antineoplastic drugs. 
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ODREĐIVANJE KINETIČKIH PARAMETARA I ISPITIVANJE 

REDOKS MEHANIZMA HINOKSALINA NA ELEKTRODI OD 

STAKLASTOG UGLJENIKA 

Elektrohemijsko ponašanje biološki značajnog heterocikličnog jedinjenja hinoksalina (QUI) 

ispitivano je cikličnom voltametrijom (CV) u rastvorima različitih pH vrednosti, korišćenjem 

electrode odstaklastog ugljenika. Redukcija QUI u kiseloj sredini se odigrava kao kvazi-

reverzibilna reakcija, koja u baznoj sredini postaje reverzibilna. Određeni su i razmatrani kinetički 

parametric elektrodnog procesa kao što su koeficijent αnα, difuzioni koeficijent (D) i konstanta 

brzine (ks). Na osnovu eksperimentalnih rezultata predložen je mehanizam elektrodne reakcije. U 

procesu redukcije adiraju se dva elektrona i dva protona na pirazinski prsten hinoksalina i nastaje 

njegov dihidro derivat. Proizvod redukcije hinoksalina u kiseloj sredini se dalje oksiduje. Ovaj 

process oksidacije je difuziono kontrolisan, ireverzibilan i odigrava se uz učešće jednog elektrona i 

jednog protona. 

Ključne reči: Hinoksalin, ciklična voltametrija, elektroda od staklastog ugljenika, redoks 

mehanizam, kinetički parametri 

 


