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Abstract. The development of new experimental techniques, such as cryo-electron 

spectroscopy, enables insight into the structural features inside cells. However, in 

specific cases, it is still not possible to get the cryo images. Therefore, the development 

of the scores for the evaluation of the quality of the constructed RNAs, similarly to the 

proteins, is a prerequisite for the investigation of the diseases caused by the organisms 

not well investigated. Here, we are providing a summary of the evaluation scores in use 

for the prediction of the quality of the constructed 3D models of the RNAs. 
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1. INTRODUCTION 

The RNAs are attracting attention since the 1990s due to numerous roles inside living 

organisms, but also because of good catalytic activities. The secondary RNA structures 

are available for the majority of known living organisms. Also, 3D structures of RNAs 

from various organisms in the form of cryo-electron microscopy images and X-ray 

images are available alone or in the complexes. However, in certain cases, it is almost 

impossible to isolate particular organelles containing RNAs. Then, it is necessary to 

construct the 3D structures of RNAs based on the secondary structures. The construction 

of the interesting segments or the whole RNAs is not so complicated nowadays and 

computationally expensive. Various programming packages are in use, such as ModeRNA 

(contain commands that enable changes on the different entities: the entire molecule, a 

particular region, and a single residue (Rother et al., 2011)), and SimRNA web (a web 

server for RNA 3D structure modeling with optional restraints (Magnus et al., 2016)). 

Besides these programs, other software packages were created for RNA 3D structure 

prediction, such as YAMPP (Malhotra et al., 1994), NAB (Macke and Case, 1998), 
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ERNA-3D (Zwieb et al., 1998), MANIP (Massire and Westhof, 1998), S2S (Jossinet and 

Westhof, 2005), FARNA (Das and Baker, 2007), MC-Fold/MC-Sym (Parisien and 

Major, 2008), RNA2D3D (Martinez et al., 2008), iFOLDRNA (Sharma et al., 2008; 

Krokhotin et al., 2015), NAST (Jonikas et al., 2009), Assemble (Jossinet et al., 2010), 

HiRE-RNA (Pasquali and Derreumaux, 2010), FARFAR (Das et al., 2010), RNABuilder 

(Flores and Altman, 2010), OxRNA (Sulc et al., 2014), 3dRNA (Zhao et al., 2012), etc. A 

different approach from previously developed software programs is used in EvoClustRNA 

(guided in silico modeling by seeking a global helical arrangement for the target 

sequence that is shared across de novo models of numerous sequence homologs (Magnus 

et al., 2019)).  

The structural organization of RNAs is going in discrete states or transitions that 

involve the organization of secondary (2D) structure or base-pairing and a cooperative 

transition to the 3D structure. This fact is important in computational approaches leading 

to the in silico construction of RNAs. Various program packages give various answers 

even for a short RNA sequence (Schlick and Pyle, 2017). Some programs worth 

mentioning serve for searching the specific motifs inside RNAs, like JAR3D. Its aim 

consists of finding possible 3D geometries for the hairpin and internal loops by matching 

with RNA 3D Motif Atlas when it is possible. Probabilistic scoring and other distance 

criteria are used for novel sequences. The score shows the ability to form the same 

pattern of interactions.  

Some of the knowledge-based potentials used for proteins can be used for the 

evaluation of the models of RNA tertiary structures (Yang et al., 2016), but some new-

ones were developed for RNAs. It is worth to mention the initiatives, such as RNA-

Puzzles which aim is assessing the cutting edge of RNA structure prediction techniques, 

comparing the different methods and tools (with the elucidation of their relative strengths 

and weaknesses), and clarification of their limits in terms of sequence length and the 

complexity of the structures, the determination to get the ultimate solution to the structure 

prediction problem, and the promotion of the available methods which guide users for the 

suitable tools for different problems, and encouraging the RNA structure prediction 

community in their efforts to improve the current tools (Cruz et al., 2012). 

2. GRAPH MODELS OF RNAS 

There are several graph models developed from the 1970s. Some of the developers 

are Tinoco, Nussinov, and Waterman (Schlick and Pyle, 2017). Several web servers 

emerged recently. RAG-3D extends the RNA-As-Graphs (RAG) catalog to 3D graphs 

and provides the link of the solved PDB structures and 3D graphs (Zahran et al., 2015). 

RAGTOP program (RNA-As-Graphs-TopologyPrediction) uses the coarse-grained 

representation of graphs for efficient sampling of the associated conformational space 

(Laing et al., 2013; Kim et al., 2014; Kim et al., 2015).  

3. EVALUATION 

The success of the proposed 3D RNA models must follow two general criteria. The 

predicted model must be geometrically and topologically very close to the experimentally 

determined structure (used as a reference). The correctness and of the crystal structure or 
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NMR structure is assumed. Secondly, the stereochemistry of the predicted model must be 

correct. Stereochemical correctness can be checked using MolProbity (Davis et al., 2007). 

For the evaluation of RNA models (not applicable to proteins), firstly Capriotti et al. 

developed Ribonucleic Acids Statistical Potential (RASP) in 2011 (Capriotti et al., 2011; 

Norambuena et al., 2013). Afterward, the coarse-grained and all-atom KB potentials were 

proposed by Bernauer et al. in 2011 (Bernauer et al., 2011). The third in the row who 

developed the statistical potential (3dRNA score) was Yi Xiao’s group in 2015 (Wang et 

al., 2015). For the evaluation of the predicted models, the root means square deviation 

(RMSD) is used together with the Interaction Network Fidelity (INF). 

KB potential is a distance-dependent statistical potential that uses a Dirichlet process 

mixture model to obtain distance distributions (Bernauer et al., 2011; Neal, 2000). RASP 

is also a distance-dependent statistical potential which is a detailed full-atom potential 

including the representation of local and non-local interactions in RNA structures 

(Capriotti et al., 2011; Melo et al., 2002). 3dRNA score beside distance-dependent 

potential also uses a dihedral-dependent potential involving seven RNA dihedral angles 

(Wang et al., 2015). Different from all previously mentioned scores, Precision Training 

RNA Mark (PTRNAmark) not only considers non-bonded interactions (Yang et al., 

2016). RMSD is defined as: 

  (1) 

where  is the Euclidean distance between a given pair of corresponding atoms. RMSD is 

calculated for all heavy atoms, and N is the number of all pairs of heavy atoms.  

The interaction network fidelity (INF) is calculated using the formula: 

  (2) 

where TP is the number of correctly predicted base-base interactions, FP is the number of 

predicted base-base interactions with no correspondence in the solution model, and FN is 

the number of base-base interactions in the solution model not present in the predicted 

model (Magnus et al., 2019). Then, the deformation index (DI) is calculated as: 

  (3) 

Deformation profile is a distance matrix computed as the average RMSD between the 

individual bases of the predicted and the reference models superposing each nucleotide of 

the predicted RNA model over the corresponding nucleotide of the reference model (Cruz 

et al., 2012). The p-value is calculated according to the following formula (Cruz et al., 

2012): 

  (4) 
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where  ; N is the number of nucleotides; a and b are fitting 

parameters that depend on whether the secondary structure information is provided as an 

input to molecular dynamic simulation. 

3.1. The K-category correlation coefficient 

3.1.1. Correlation coefficient, RK 

 

RK correlation coefficient is defined as: 

  (5) 

In this case, Pearson's correlation coefficient is naturally extended by the application 

of the dot (inner) product between corresponding columns for each position in the rows. 

The range of values goes from [-1,1]. 

3.2. Accuracy measures 

Assessing the prediction accuracy achieved by a given RNA secondary structure 

prediction procedure is measured using sensitivity, positive predictive value (PPV), and 

the F-measure (Aghaeepour and Hoos, 2013). Sensitivity can be defined as a ratio of 

several correctly predicted base-pairs to the number of base-pairs in the reference 

structure: 

  (6) 

PPV is the ratio of the number of correctly predicted base-pairs to the number of base-

pairs in the predicted structure: 

  (7) 

F is defined as a harmonic mean of sensitivity and PPV: 

  (8) 

The F-measure, sensitivity, and PPV for the prediction of any structure are in the 

interval [0,1], where 1 characterizes a perfect prediction.  

The Matthews correlation coefficient (MCC) is used as a single score summarizing 

both sensitivity and PPV (Matthews, 1975). It is defined as: 

  (9) 

where TP, TN, FP, and FN represent the number of true positive, true negative, false 

positive, and false negative base pairs.  
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3.3. Metrics of the scoring function 

To rank the near-native RNA structures, the ES (enrichment score) can be used which 

is based on the top 10% scoring (Etop10%) and the best 10% RMSD values (Rtop10%), then 

the evaluation of their degree of overlap (this choice is arbitrary). It is defined as: 

  (10) 

where Etop10% is the number of structures with energies (scores given by scoring function) 

in the lowest 10% of the energy range. For RMSD-based ES, Rtop10% is the number of 

structures with RMSD in the lowest 10%. Etop10%Rtop10% is the intersection of Etop10% 

and Rtop10%. If the relationship is random, ES is equal to 1, so: 

 ES=  (11) 

3.4. Evaluation of the secondary structure prediction (base-pairing and topology) 

As the most accurate secondary structure prediction method it was proven the 

multiple sequence analysis or shape-directed to find the conserved motifs (Tan et al., 

2017). The physics-based free energy minimization secondary structure predictions are 

still in use among the biologists' community. Current algorithms for the prediction of 

secondary structures prefer canonical base pairs (A-U, C-G, and G-U base pairs). 

Unfortunately, there are 10% of the 2028 native base pairs are non-canonical base pairs 

(A-G, A-C, A-A, U-U, C-U, C-C, and G-G base pairs). According to this, the accuracy of 

base-pair predictions cannot be more than 90% (Zhao et al., 2018). On average, only 

about 38% of the predicted secondary structures have identical topologies with native 

(Zhao et al., 2018). 

4. CONCLUSION 

In silico experiments, and subsequent evaluations show that the exact prediction of 

the secondary structure of RNAs is very hard, and not accurate. Therefore, further 

investigations must be performed on the prediction methods from a different point of 

view because the most successful approaches for predicting RNA tertiary structures are 

based on secondary structures. 
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EVALUACIJA KONSTRUISANIH 3D MODELA RNK: PRIKAZ 

Razvoj novih eksperimentalnih tehnika, kao što je krio-elektronska mikroskopija, omogućava 

uvid u strukturne karakteristike unutar ćelije. Međutim, u specifičnim slučajevima, i dalje nije 

moguće dobiti krio slike. Zato, razviće skorova za evaluaciju kvaliteta konstruisanih modela RNK, 

slično proteinima, preduslov je za istraživanje bolesti koje su uzrokovane organizmima koje nisu 

dovoljno ispitani. Ovde su izloženi skorovi za evaluaciju koji se koriste za predviđanje kvaliteta 

konstruisanih 3D modela RNK. 

Ključne reči: skorovi, RNK, evaluacija 


