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KILLING FORMS ON TORIC SASAKI-EINSTEIN SPACES ∗

Mihai Visinescu

Abstract. We summarize recent results on the construction of Killing forms on Sasaki-
Einstein manifolds. The complete set of special Killing forms of the Sasaki-Einstein
spaces are presented. It is pointed out the existence of two additional Killing forms
associated with the complex holomorphic volume form of Calabi-Yau cone manifold. In
the case of toric Sasaki-Einstein manifolds the Killing forms are expressed in terms of
toric data.

1. Introduction

In the last time Sasakian geometries, as an odd-dimensional analogue of Kähler
geometries, have become of high interest. Sasakian structures in 2n− 1 dimensions
are sandwiched between the Kähler cone of complex dimension n and the transverse
Kähler structure of complex dimension n−1. In particular the Kähler cone is Ricci-
flat, i.e. Calabi-Yau manifold, if and only if the corresponding Sasaki manifold is
Einstein.

The interest in Sasaki-Einstein geometry has arisen due to its importance in
AdS/CFT correspondence [9] which relates quantum gravity in certain background
to ordinary quantum field theory without gravity. In a particular setting the
AdS/CFT correspondence involves Sasaki-Einstein geometries in dimensions 5 and 7
in connection with superconformal field theories in dimensions 4 and 3 respectively.

The most general higher-dimensional metrics describing rotating black holes
with NUT parameters in a asymptotically AdS spacetime were described in [2]. In
certain scaling limits these geometries are related to Sasaki-Einstein manifolds. Re-
cently nontrivial infinite families of toric Sasaki-Einstein manifolds were explicitly
constructed [5, 6] and many new insights were obtained for AdS/CFT correspon-
dence.
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The paper is organized as follows. In the next section we briefly describe various
types of Killing tensors. In Section 3 we present the Sasakian geometry and its
interrelation with Kähler geometry. The next two Sections are devoted to the
symplectic and complex approaches of the metric cone. In Section 6 it is introduced
the Delzant construction to obtain the toric description of Calabi-Yau spaces. In
Section 7 the complete set of special Killing forms of the toric Sasaki-Einstein spaces
are presented. The paper ends with conclusions in Section 8.

2. Killing forms

Killing vector fields represent a basic object of differential geometry connected
with the infinitesimal isometries. The flow of a Killing vector field preserves a given
metric and there exists a conserved quantity for the geodesic motions. A natural
generalization of Killing vector fields is given by the conformal Killing vector fields
with flows preserving a given conformal class of metrics. More generally, one can
consider conformal Killing forms which are sometimes referred as twistor forms or
conformal Killing-Yano tensors.

Definition 2.1. A conformal Killing-Yano tensor of rank p on a n dimensional
Riemannian manifold (M, g) is a p-form ψ which satisfies

(2.1) ∇Xψ =
1

p+ 1
X−| dψ − 1

n− p+ 1
X∗ ∧ d∗ψ,

for any vector field X on M .

Here we used the standard conventions: ∇ is the Levi-Civita connection with respect
to the metric g, X∗ is the 1-form dual to the vector field X, −| is the operator dual
to the wedge product and d∗ is the adjoint of the exterior derivative d. If ψ is
co-closed in (2.1), then we obtain the definition of a Killing-Yano tensor [19].

A particular class of Killing forms is represented by the special Killing forms:

Definition 2.2. A Killing form ψ is said to be a special Killing form if it satisfies
for some constant c the additional equation

(2.2) ∇X(dψ) = cX∗ ∧ ψ,

for any vector field X on M .

There is also a symmetric generalization of the Killing vectors:

Definition 2.3. A symmetric tensor Ki1···ir of rank r > 1 satisfying the general-
ized Killing equation

K(i1···ir;j) = 0,

is called a Stäckel-Killing tensor.
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Here a semicolon precedes an index of covariant differentiation associated with the
Levi-Civita connection and a round bracket denotes a symmetrization over the
indices within.

The analogue of the conserved quantities associated with Killing vectors is given
by the following proposition:

Proposition 2.1. For any geodesic γ with tangent vector γ̇i

QK = Ki1···ir γ̇
i1 · · · γ̇ir ,

is constant along γ.

Let us note that there is an important connection between these two general-
izations of the Killing vectors. To wit, given two Killing-Yano tensors ψi1,...,ik and
σi1,...,ik there is a Stäckel-Killing tensor of rank 2:

K
(ψ,σ)
ij = ψii2...ikσ

i2...ik
j + σii2...ikψ

i2...ik
j .

This fact offers a method to generate higher order integrals of motion by identifying
the complete set of Killing-Yano tensors.

3. Sasakian geometry

There are many equivalent definitions of the Sasakian structures. A simple and
direct definition is the following:

Definition 3.1. A compact Riemannian manifold (Y, g) is Sasakian if and only if
its metric cone (X = C(Y ) ∼= R+ × Y , ḡ = dr2 + r2 g) is Kähler.

Here r ∈ (0,∞) may be considered as a coordinate on the positive real line R+.
The Sasakian manifold (Y, g) is naturally isometrically embedded into the metric
cone via the inclusion Y = {r = 1} = {1} × Y ⊂ C(Y ).

Let us denote by

(3.1) K̃ ≡ J
(
r
∂

∂r

)
,

where J is the complex structure on the cone manifold. K̃− iJ K̃ is a holomorphic
vector field on C(Y ) and the restrictionK of K̃ to Y ⊂ C(Y ) is the Reeb vector field
on Y . The Reeb vector field K is a Killing vector on (Y, g), has unit length and, in
particular, is nowhere zero. Its integral curves are geodesics and the corresponding
foliation FK is called the Reeb foliation.

Let Y be a Sasaki-Einstein manifold of dimension dimR Y = 2n−1 and its Kähler
cone X = C(Y ) is of dimension dimRX = 2n , (dimCX = n). Sasaki-Einstein ge-
ometry is naturally “sandwiched” between two Kähler-Einstein geometries as shown
in the following proposition:
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Proposition 3.1. Let (Y, g) be a Sasaki manifold of dimension 2n− 1. Then the
following are equivalent

(1) (Y, g) is Sasaki-Einstein with Ricg = 2(n− 1)g;

(2) The Kähler cone (C(Y ), ḡ) is Ricci-flat, Ricḡ = 0;

(3) The transverse Kähler structure to the Reeb foliation FK is Kähler-Einstein
with RicT = 2ngT .

The Kähler form ω is an exact 2-form and homogeneous degree 2 under the
Euler angle r ∂∂r

ω = −1

2
d(r2η) = −rdr ∧ η − 1

2
r2dη , Lr ∂

∂r
ω = 2ω,

where η is the Sasakian 1-form of Y . It lifts to C(Y ) as

(3.2) η = J
(dr
r

)
= i(∂ − ∂̄) log r.

We use the same letter η by the abuse of notation. ¿From (3.1) and (3.2) it results
that K̃ is dual to the 1-form r2η. The Kähler form ω can be written as

ω =
1

2
i∂∂̄r2,

which means that

(3.3) F =
r2

4
,

is the Kähler potential.

4. Symplectic approach

Let (y, ϕ) be the symplectic coordinates on X.

If (X,ω) is toric, the standard n-torus Tn = Rn/2πZn acts effectively on X

(4.1) τ : Tn → Diff(X,ω),

preserving the Kähler form. ∂/∂ϕi generate the Tn action, ϕi being the angular
coordinates along the orbit of the torus action ϕi ∼ ϕi + 2π. Tn-invariant Kähler
metric on X is

(4.2) ds2 = Gijdy
idyj +Gijdϕidϕj ,

where Gij is the Hessian of the symplectic potential G(y) in the y coordinates

Gij =
∂2G

∂yi∂yj
, 1 ≤ i, j ≤ n,



Killing Forms on Toric Sasaki-Einstein Spaces 193

and Gij = (Gij)
−1.

The almost complex structure is

J =

(
0 −Gij
Gij 0

)
,

and the symplectic (Kähler) form is ω = dyi ∧ dϕi.
Associated to (X,ω, τ) there is a moment map µ : X → Rn

(4.3) µ(y, ϕ) = y,

i.e. the projection on the action coordinates:

yi = −1

2

⟨
r2η,

∂

∂ϕi

⟩
.

The moment map exhibits the Kähler cone as a Lagrangian fibration over a
strictly convex rational polyhedral cone C ⊂ Rn by forgetting the angular coordi-
nates ϕi [12]

C {y ∈ Rn|la(y) > 0 , a = 1, . . . , d} ,
with the linear function la(y) = (y, va), where va are the inward pointing normal
vectors to the d facets of the polyhedral cone. The set of vectors {va}

va = via
∂

∂ϕi
, via ∈ Z,

is called a toric data.

5. Complex approach

The standard complex coordinates are wi on C\{0}. Log complex coordinates
are zi = logwi = xi + iϕi and in these complex coordinates the metric is

(5.1) ds2 = Fijdxidxj + Fijdϕidϕj ,

where Fij is the Hessian of the Kähler potential (3.3). Note also that in the complex
coordinates zi the complex structures and the Kähler form are:

(5.2) J =

(
0 −I
I 0

)
, ω =

(
0 Fij

−Fij 0

)
.

The moment map of the Tn-action with respect to ω is given by (4.3). The sym-
plectic potential G and Kähler potential F are related by the Legendre transform

F (x) =

(
yi
∂G

∂yi
−G

)
(y = ∂F/∂x).

Therefore F and G are Legendre dual to each other

(5.3) F (x) +G(y) =
∑
j

∂F

∂xj

∂G

∂yj
at xi =

∂G

∂yi
or yi =

∂F

∂xi
.

It follows from (4.2) and (5.1) that Fij = Gij (y = ∂F/∂x).
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6. Delzant construction

Let us note that not every polytope in Rn is the moment polytope of some triple
(X,ω, τ). The image of X under the moment map µ (4.3) is a certain kind of convex
rational polytope in Rn called a Delzant polytope [3, 1].

Definition 6.1. A convex polytope P in Rn is Delzant if

(a) there are n edges meeting at each vertex p;

(b) the edges meeting at the vertex p are rational, i.e. each edge is of the form
1 + tui , 0 ≤ t ≤ ∞ where ui ∈ Zn;

(c) the ui, . . . , un in (b) can be chosen to be a basis of Zn.

Delzant construction associates to every Delzant polytope P ⊂ Rn a closed
connected symplectic manifold (M,ω) together with the Hamiltonian Tn action
(4.1) and the moment map µ (4.3).

Let us write the Reeb vector (3.1) in the form:

(6.1) K̃ = bi
∂

∂ϕi
.

In the symplectic coordinates (y, ϕ) we have

r
∂

∂r
= 2yi

∂

∂yi
,

and the components of the Reeb vector (6.1) are bi = 2Gijy
j .

Using the Delzant construction the general symplectic potential has the following
form in terms of the toric data [7, 1]:

(6.2) G = Gcan +Gb + h,

where

(6.3) Gcan =
1

2

∑
a

la(y) log la(y),

(6.4) Gb =
1

2

∑
a

lb(y) log lb(y)−
1

2
l∞(y) log l∞(y),

with lb(y) = (b, y) , l∞(y) =
∑
a(va, y) and h is a homogeneous degree one function

of variables yi

(6.5) h = λiy
i + t,
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λi, t being some constants.

For a complete determination of the symplectic potential (6.2) it is necessary to
find the Reeb vector K̃ (6.1) and the function h (6.5). There are known two different
algebraic procedures to extract the components of the Reeb vector K̃ from the toric
data. According to the AdS/CFT correspondence the volume of the Sasaki-Einstein
space corresponds to the central charge of the dual conformal field theory. The first
procedure is based on the maximization of the central charge (a-maximization) [8]
used in connection with the computation of the Weyl anomaly in 4-dimensional field
theory. The second one is known as volume minimization (or Z-minimization) [12].

Ricci form corresponding to F (x) is given by

ρ = −i∂∂̄ log det(Fij),

and the Ricci-flatness condition (ρ = 0) implies

log det(Fij) = −2γixi + C,

where γi and C are constants.

Legendre transformation of this equation is the Monge-Ampère equation

(6.6) det(Gij) = exp

(
2γi

∂G

∂yi
− C

)
.

Using (6.3) and (6.4) we evaluate

∂Gcan

∂yi
=

1

2

∑
a

(1 + log la(y)) v
a
i ,

∂Gb
∂yi

=
1

2
(1 + log lb(y)) bi −

1

2
(1 + log l∞(y))

∑
c

vci .

For a Calabi-Yau manifold X, by an appropriate SL(n,Z) transformation, it is
possible to bring the normal vectors of the polyhedral cone in the form

(6.7) va = (1, wa).

With this choice, from (6.6) we infer

(6.8) −n = (b, γ),

and
det(Gij) = f(y)

∏
a

[la(y)]
−1,

where f(y) is a smooth function on the polyhedral cone minus its apex [12]. Finally
we get (va, γ) = −1 which can be solved using form (6.7)

(6.9) γ = (−1, 0, 0, . . . , 0).
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Also, from (6.8) we obtain for the first component of the Reeb vector b1 = n, a
result which is valid for any toric data.

To completely determine the Sasaki-Einstein metric one should solve the non-
linear partial differential equation (6.6) for h (6.5). Some explicit solutions to the
Monge-Ampère equation are presented in [13].

The (n, 0) holomorphic form of the Ricci-flat metric on the Calabi-Yau cone is

Ω = eiα(detFij)
1/2dz1 ∧ · · · ∧ dzn,

with α a phase space which is fixed by requiring that Ω is a closed form. From (6.6)
and (6.9) we have finally

(6.10) Ω = ex1+iϕ1dz1 ∧ · · · ∧ dzn = dw1 ∧ · · · ∧ dwn/(w2 . . . wn).

The Kähler potential F (3.3) is obtain by the Legendre transform (5.3). Using
the evaluation of xi

xi =
∂G

∂yi
=

1

2

∑
a

vai log la(y) +
1

2
bi (1 + log lb(y))−

1

2

∑
c

vci log l∞(y) + λi,

we obtain finally

F (x) =
r2

4
=

1

2

∑
i

biy
i − t,

Detailed analysis shows that the constant t must be set to zero [4].

¿From (3.2) we have

η =
2

r2
∂F

∂xj
dϕj =

1

r

∂r

∂xj
dϕj =

2

r2
yjdϕj .

Note that

η(K̃) =
2

r2
yjbj = 1,

and

dη =
2

r2

[
Gjk − 4

r2
yjyk

]
dxk ∧ dϕj =

2

r2

[
Gjk − 1

r2
GjmGknbmbn

]
dxk ∧ dϕj .

7. Hidden symmetries of the Sasaki-Einstein spaces

The Killing forms of the toric Sasaki-Einstein manifold Y are described by the
special Killing forms (2.2) [14]

Θk = η ∧ (dη)k , k = 0, 1, · · · , n− 1.
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Besides these Killing forms, there are n − 1 closed conformal Killing forms (also
called ∗-Killing forms)

Φk = (dη)k , k = 1, · · · , n− 1.

Moreover in the case of the Calabi-Yau cone, the holonomy is SU(n) and there
are two additional Killing forms of degree n. In order to write explicitly these
additional Killing forms we shall express the volume form of the metric cone in
terms of the Kähler form (5.2)

dV =
1

n!
ωn.

Here ωn is the wedge product of ω with itself n times. The volume of a Kähler
manifold can be also written as [14, 18]

dV =
in

2n
(−1)n(n−1)/2dV ∧ dV ,

where dV is the complex volume holomorphic (n, 0) form (6.10) of C(Y ). The
additional (real) Killing forms are given by the real respectively the imaginary part
of the complex volume form.

Finally to extract the corresponding additional Killing forms of the Einstein-
Sasaki spaces we make use of the fact that for any p-form ψ on the space Y we can
define an associated p+ 1-form ψC on the cone C(Y ):

ψC := rpdr ∧ ψ +
rp+1

p+ 1
dψ.

ψC is parallel if and only if ψ is a special Killing form (2.2) with constant c = −(p+1)
[14].

Explicit examples of the additional Killing forms are given in [15, 17] for Y p,q

spaces [5] and in [16] for La,b,c spaces [6, 10, 11].

8. Conclusions

In general it is a hard task to find the complete set of Killing forms trying to
solve equation (2.1). In some cases it is possible to produce the complete set of
Killing forms taking into account the geometrical features of the spaces. That is
the case of Sasaki-Einstein spaces for which the explicit construction of the Killing
forms is permitted.

Killing tensors play a fundamental role in the separability of field equations,
pseudoclassical spinning models, the existence of quantum symmetry operators,
supersymmetries, etc. The remarkable properties of Killing tensors offer new per-
spective in investigation of hidden symmetries of various spacetime structures.
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