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DBI-TYPE TACHYONS FOR INVERSE cosh POTENTIAL ∗

Dragoljub D. Dimitrijević, Goran S. Djordjević,
Milan Milošević and Ljubǐsa Nešić

Abstract.We consider classical and quantum dynamics of a tachyonic system described
by a DBI type Lagrangian and inverse cosh potential. This investigation is partially
motivated by the string theory and D-brane dynamics, but mostly by their application
in cosmological inflation. A formalism for describing dynamics of spatially homogenous
tachyon scalar field with this kind of potentials is developed. Classical actions and
corresponding quantum propagators in the Feynman path integral approach, both on
real and nonarchimedean spaces, are calculated. Possibilities for a quantum adelic
generalization of these models are noticed. Cosmological applications are pointed out
and discussed.

1. Introduction

The main task of quantum cosmology [1] is to describe the evolution of the uni-
verse in a very early stage. Usually one takes that the universe is described by a
complex-valued wave function. Since quantum cosmology is related to the Planck
scale phenomena, it is logical to consider various geometries (in particular nonar-
chimedean [2] and noncommutative [3] ones) and parametrizations of the space-time
coordinates: real, p-adic, or even adelic [4].

One of the most challenging period of the evolution of the Universe, despite its
extremal shortness, is the inflation period, in particular, its very beginning. Some
of the best candidates to give some physical background and understanding of the
quantum origin of inflation are string theory, M-theory, string field theory, etc.

There have been a number of attempts to understand this description of the early
Universe via (classical) nonlocal cosmological models, first of all via p-adic inflation
models [5, 6], which are represented by a nonlocal p-adic string theory coupled
to gravity. For these models, some rolling inflationary solutions were constructed
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and compared with CMB observations [5]. Another example is the investigation
of the p-adic inflation near a maximum of the nonlocal potential when non-local
derivative operators are included in the inflaton Lagrangian. It was found that
higher-order derivative operators can support a (sufficiently) prolonged phase of
slow-roll inflation [7].

The field theory of tachyon matter proposed by Sen [8], in a zero-dimensional
version suggested by Kar [9] leads to a model of a particle moving in a constant
external field with quadratic ”damping”-like term. It leads to a dozen of interesting
classical - toy models. Untill now, only a few of them are exactly solvable and
quantized in the form of the path integrals (as an example see [10]).

The Lagrangian we study here is of a non-standard - DBI - type. It contains
potential as a multiplicative factor, and a term with derivatives (”kinetic” term)
inside the square root [8, 11]

Ltach = L(T, ∂µT ) = −V (T )
√
1 + gµν∂µT∂νT ,(1.1)

where T is a tachyonic scalar field, V (T ) - potential of the theory, and gµν - compo-
nents of the metric tensor with ”mostly positive” signature. For the case of spatially
homogenous tachyon field in flat spacetime, the Lagrangian and the Hamiltonian
are

Ltach(T, Ṫ ) = −V (T )
√
1− Ṫ 2,(1.2)

Htach(T, P ) =
√

P 2 + V 2(T ),(1.3)

while the equation of motion is

T̈ (t)− 1

V (T )

dV

dT
Ṫ 2(t) = − 1

V (T )

dV

dT
.(1.4)

In this paper we are focussed on one of the most interesting tachyonic potentials
in the literature [12, 13, 14, 15]

V (T ) =
1

cosh(βT )
, β = const. > 0.(1.5)

It is worth emphasizing that this system is not a dissipative, but rather a con-
servative one, i.e. Hamiltonian of the system is conserved quantity [16].

Quantum dynamics of tachyonic fields, in general, is purely investigated. We cal-
culate the exact quantum propagator of the model, as well as the vacuum states and
conditions necessary to construct a real and a p-adic model, and also the necessary
step towards an adelic generalization.

This paper is organized as follows. In Section 2. we will introduce and study
zero dimensional analogue of the theory, which is equivalent to the case of spatially
homogenous theory in the flat space-time. Non-uniqueness of Lagrangian is studied
in Section 3., while Section 4. and Section 5. deal with the propagator in the real
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and p-adic case, respectively. Vacuum sector of the theory is discussed in Section
6., while Section 7. is reserved for the discussion on cosmological implications and
ideas for further investigations. Validity of the group property for the propagator
in p-adic case is checked and confirmed in the Appendix.

2. ”Classicalization” of the Field Model

To understand the theory we consider and investigate lower dimensional analogs
of the tachyon field theory [9, 10, 17]. The corresponding zero dimensional analogue
of a tachyon field can be obtained by the correspondence: xi → t, T → x, V (T ) →
V (x). The action and the Lagrangian read

S = −
∫

dtV (x)
√
1− ẋ2,(2.1)

Ltach = −V (x)
√
1− ẋ2.(2.2)

In this article we will focus our attention on the potential of type

V (T ) =
1

cosh(βx)
, β = const. > 0.(2.3)

Note that the potential (2.3) is never negative (bounded from below), symmetric
under x → −x, has a maximum at the origin x = 0, and goes to zero for a large x.
This model has been considered in many articles in cosmology (see [11, 13, 14] and
references therein).
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Fig. 2.1: Potential V (x) = 1
cosh(βx)

The equation of motion for action given by equation (2.1) has the form

ẍ− 1

V (x)

dV

dx
ẋ2 = − 1

V (x)

dV

dx
.(2.4)
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Substituting potential given by equation (2.3) in equation (2.4) we get a differential
equation

ẍ(t) + β tanh(βx)ẋ(t)2 = β tanh(βx),(2.5)

Equation (2.5) can be transformed to

ẋdẋ

1− ẋ2
= β

sinh(βx)

cosh(βx)
dx.(2.6)

By solving the equation (2.6) for ẋ we get

ẋ2 = 1− 1

C2
1 cosh

2(βx)
.(2.7)

After integration of (2.7) we get the general solution of the equation of motion (2.4)

x(t) =
1

β
arcsinh

[
±

√
1− 1

C2
1

sinh(βC2 ± βt)

]
.(2.8)

For the initial and final conditions x(0) = x1 and x(τ) = x2 respectively, we get
constants C1 and C2

C2
1 =

(
1− sinh2(βx2)− sinh2(βx1)

sinh2(βC2 ± βτ)− sinh2(βC2)

)−1

,(2.9)

C2 =
1

2β
ln

[
sinh(βx2)− e−β(±τ) sinh(βx1)

sinh(βx2)− eβ(±τ) sinh(βx1)

]
.(2.10)

Now, the solution (2.8) takes the form

x(t) =
1

β
arcsinh

(
sinh(βt) sinh(βx2)− sinh(βx1) sinh(β(t− τ))

sinh(βτ)

)
.(2.11)

We will keep ẋ2 < 1 through all calculations. Of course, case ẋ2 ≥ 1 is quite
interesting (see [18]). However, will not be considered here.

3. Non-Uniqueness of Lagrangian

The task to quantize the system with the Lagrangian (2.2) is a non-trivial one.
Looking at the classical level, we can choose another Lagrangian which will lead to
the same equation of motion and will be more convenient [10, 17, 19]. Of course, one
should be concerned about the equivalence of the Lagrangians at the quantum level,
which is a very old problem in general. However, we are going to apply our model
for a very short period of time - beginning of inflation, where a ”local equivalence”
of Lagrangians should be a reasonable assumption.
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Once the convenient Lagrangian is taken, we can proceed with the quantization
using the Feynman path integral approach for calculating the propagator for the
system.

The equation of motion (2.5) can also be obtained from the (standard type)
Lagrangian

L =
1

2
ẋ(t)2 cosh2(βx) +

1

2
cosh2(βx).(3.1)

Rescaling the coordinate x(t) → Y (t) = 1
β sinh(βx(t)) Lagrangian (3.1) takes a very

suitable quadratic form

L =
1

2
Ẏ (t)2 +

1

2
β2Y (t)2 +

1

2
,(3.2)

where the last term can be omitted in the rest of the paper. The procedure is as
follows [19]. We start with the equation of motion of the form

ẍ(t) + b(x)ẋ2(t) + g(x) = 0,(3.3)

which is of the same form as (1.4) and (2.5). Let us stress that (3.3) can be obtained
from the standard-type Lagrangian Lst, defined by the formula

Lst(x, ẋ) =
1

2
ẋ2e2I(x) −

∫ x

g(x)e2I(x)dx,(3.4)

I(x) =

∫ x

b(x)dx,(3.5)

where the lower limit of the integral(s) are chosen arbitrary. In our case, b(x) =

−d log V (x)
dx and g(x) = −b(x), so

I(x) = − log V (x), e2I =
1

V 2
.(3.6)

After some straightforward calculations, the general standard-type Lagrangian be-
comes

Lst(x, ẋ) =
1

2

(
ẋ

V (x)

)2

+
1

2

1

V (x)2
.(3.7)

By introducing a new variable (field) Y and the corresponding new potential W (Y )
via a local change of variable

Y =

∫ x dx

V (x)
, W (Y ) =

1

2V (x(Y ))2
,(3.8)

we can rewrite this Lagrangian in the canonical (i.e. standard) form

Lst(Y, Ẏ ) =
1

2
Ẏ 2 +W (Y ).(3.9)
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Having in mind the presented procedure, it is straightforward to obtain the
standard-type Lagrangian for various tachyonic potentials, which for the case V (x) =
1/ cosh(βx) has the form (3.2).

Now, a general Euler-Lagrange equation for the Lagrangian of the form (3.2) is

Ÿ (t)− β2Y (t) = 0,(3.10)

which is the equation of motion for an inverted harmonic oscillator (here with
constant mass and frequency). The solution of this equation is a well known one

Y (t) = etβC ′
1 + e−tβC ′

2.(3.11)

For the initial and final conditions Y (0) = y1 and Y (τ) = y2, respectively, the
integration constants are

C ′
1 =

y2e
βτ − y1

e2βτ − 1
,(3.12)

C ′
2 = y1 −

y2e
βτ − y1

e2βτ − 1
,(3.13)

and the solution is

Y (t) =
1

2
e−βt(coth(βτ)− 1)

[
y1

(
e2βτ − e2βt

)
+ y2

(
eβ(2t+τ) − eβτ

)]
.(3.14)

The Lagrangian (3.2) for the solution (3.14) takes the form

L =
1

8
β2e−2βt(coth(βτ)− 1)2

((
−y2e

β(2t+τ) + y1e
2βt + y1e

2βτ − y2e
βτ
)2

+
(
−y2e

β(2t+τ) + y1e
2βt − y1e

2βτ + y2e
βτ
)2

)
,(3.15)

while the classical action Sc is a quadratic one with respect to y1 and y2

Sc(y2, τ, y1, 0) =
β

2

((
y21 + y22

)
coth(βτ)− 2y1y2csch(βτ)

)
,(3.16)

where csch(βτ) = 1/ sinh(βτ). So, starting from a very ”strange”-nonlinear forms
(1.1), (1.2) and (3.2), we ended up with a locally equivalent system with a quadratic
Lagrangian and action, quite suitable for the quantization of our (toy) model.

4. Transition Amplitude in the Real Case

We are now in a position to calculate, i.e. write down transition amplitude
(propagator) for the action (3.16), which is now quadratic with respect to y1 and
y2 [20],

K∞(y2, τ ; y1, 0) =

√
− 1

2πi~
∂2Sc

∂y1∂y2
ei

Sc
~ .(4.1)
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It can be also written in the form [21]

K∞(y2, τ ; y1, 0) = λ∞

(
− 1

2h

∂2Sc

∂y1∂y2

) ∣∣∣∣ 1h ∂2Sc

∂y1∂y2

∣∣∣∣1/2
∞

×

χ∞

(
− 1

h
Sc(y2, τ ; y1, 0)

)
,(4.2)

where an arithmetic λ-function and additive character χ∞ are defined as

λ∞(b) = e−
iπ
4 sgn(b), χ∞(a) = e−2πia.(4.3)

Finally, the transition amplitude for our model on real space reads

K(y2, τ ; y1, 0)∞ = λ∞

(
β

2hsinh(βτ)

) β

hsinh(βτ)

1/2

∞
×

χ∞

(
− 1

2h

(
β
(
y21 + y22

)
coth(βτ)− 2βy1y2csch(βτ)

))
,(4.4)

or written in a rather explicit form

K(y2, τ ; y1, 0)∞ =

√
− iβcsch(βτ)

2π~
×

exp

(
i

2~
(
β
(
y21 + y22

)
coth(βτ)− 2βy1y2csch(βτ)

))
.(4.5)

It describes a nonrelativistic particle moving in an inverted (harmonic) oscillator
potential V (Y ) = −1

2βY
2.

It is important to stress the fact that inverted and harmonic oscillators are
mathematically very much alike. However, a quantum inverted oscillator system
has an energy spectrum, varying from minus to plus infinity [22]. So, the state with
the lowest energy corresponds to negative infinite energy, E = −∞.

The general solution of Schroedinger equation for the inverted oscillator can be
presented as a linear combination of solutions with definite parity

Ψ(x) = CΨeven(x) +DΨodd(x),(4.6)

C and D are real constants, and Ψeven and Ψodd are expressed in terms of confluent
hyperbolic functions (see [23] for more details).

Introducing ”annihilation” and ”creation” operators as it was done for the har-
monic oscillator, one ended up with the theory with the so-called generalized eigen-
states belonging to the complex energy eigenvalues. As it is known, the energy
eigenvalue E can be a complex number for an unstable system in which the po-
tential energy does not have a stable stationary point, which is the case here (see
[24] and reference therein for the discussion about mathematical formulations of
continuous spectrum or complex eigenvalues).
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5. Transition Amplitude in the p-Adic Case

One of formulations of p-adic quantum mechanics deals with the complex valued
wave functions (of the p-adic argument). It is based on the triple [4]

{L2(Qp),W (z), U(t)},(5.1)

where W (z) is a unitary representation of the Heisenberg-Weyl group in the Hilbert
space L2(Qp) and U(t) is a unitary dynamics (see [25] and reference therein). Gen-
eralization of p-adic and ordinary quantum mechanics (and at the same time their
unification), i.e. adelic quantum mechanics, was introduced in [26], as well as adelic
path (functional) integral approach.

In the p-adic case, the transition amplitude Kp for an action quadratic in y1 and
y2 (we take h = 1 for simplicity), as it was shown in [21] is

Kp(y2, τ ; y1, 0) = λp

(
− 1

2

∂2Sc

∂y2∂y1

) ∂2Sc

∂y2∂y1

1/2

p
χp

(
− Sc(y2, τ ; y1, 0)

)
,(5.2)

where the p-adic additive character χp is defined as [4]

χp(a) = e2πi{a}p ,(5.3)

{a}p is the fractional part of the p-adic number a, while λp is an arithmetic complex-
valued function (here with a p-adic variable), with the following basic properties

λp(0) = 1, λp(a
2b) = λp(b), |λp(b)|∞ = 1,(5.4)

λp(a) = 1, |a|p = p−ord(a) = p2γ , γ ∈ Z.(5.5)

For the p-adic model with the action (3.16), the corresponding transition amplitude
(5.2) has the form

Kp(y2, τ ; y1, 0) = λp

(
β

2sinh(βτ)

) β

sinh(βτ)

1/2

p
χp

(
− Sc(y2, τ ; y1, 0)

)
,(5.6)

or more explicitly

Kp(y2, τ ; y1, 0) = λp

(
β

2sinh(βτ)

) β

sinh(βτ)

1/2

p
×

χp

(
− β

2

((
y21 + y22

)
coth(βτ)− 2y1y2csch(βτ)

)
)

)
,(5.7)

where csch(βτ) = 1/sinh(βτ). It is worth reminding about the validity of the group
property for the transition amplitude∫

Qp

Kp(y3, τ3; y2, τ2)Kp(y2, τ2; y1, τ1)dy2 = Kp(y3, τ3; y1, τ1),(5.8)

where we (re)introduced appropriate time points (τ3, τ2, τ1). Validity of (5.8) is
checked and confirmed in the Appendix.
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6. p-Adic Quantum-Mechanical Ground State - Vacuum

The necessary condition for the existence of a p-adic quantum model, and rather
general - an adelic model [4, 21] is the existence of a p-adic quantum-mechanical
ground (vacuum) state Ψvac

p (y) in the form of a characteristic function Ω(|y|p),

Ω(|y|p) =
{

1, if |y|p ≤ 1
0, if |y|p > 1.

(6.1)

Having in mind one of the basic properties of the (p-adic) propagator and the
vacuum state, also used as a definition of the vacuum state∫

Qp

Kp(y2, τ ; y1, 0)Ψ
vac
p (y1)dy1 = Ψvac

p (y2),(6.2)

we get for Ψvac
p (y) = Ω(|y|p)∫

|y1|p≤1

Kp(y2, τ ; y1, 0)dy1 = Ω(|y2|p),(6.3)

i.e.

λp

(
β

2sinh(βτ)

) β

sinh(βτ)

1/2

p
×∫

|y1|p≤1

χp

(
− Sc(y2, τ ; y1, 0)

)
dy1 = Ω(|y2|p).(6.4)

Written more explicitly, using (3.16), the last expression becomes∫
|y1|p≤1

χp

(
− β

2

((
y21 + y22

)
coth(βτ)− 2y1y2csch(βτ)

))
dy1 ×

λp

(
β

2sinh(βτ)

) β

sinh(βτ)

1/2

p
= Ω(|y2|p).(6.5)

Using the properties of p-adic analytic functions sinh and cosh [2]

|sinh(a)|p = |a|p, |cosh(a)|p = 1,(6.6)

and p-adic Gauss integrals (for p ̸= 2, [4])∫
|y|p≤1

χp(ay
2 + by)dy =

{
Ω(|b|p), |a|p ≤ 1

λp(a)

|a|1/2p

χp(− b2

4a )Ω(|
b
a |p), |a|p > 1,(6.7)

the integral in (6.3) is reduced to the form

λp

(
β

2sinh(βτ)

)
|τ |1/2p

χp

(
− β

2
y22 coth(βτ)

)
× I = Ω(|y2|p),(6.8)



126 D. D. DIMITRIJEVIĆ, G. S. DJORDJEVIĆ, M. MILOŠEVIĆ and LJ. NEŠIĆ

where

I =

{
Ω(|b|p), |a|p ≤ 1

λp(a)

|a|1/2p

χp(− b2

4a )Ω(|
b
a |p), |a|p > 1.(6.9)

In our case, one can read a and b from (6.5)

a = −β

2
coth(βτ), |a|p =

1

|τ |p
,(6.10)

b = β
y2

sinh(βτ)
, |b|p =

y2
τ


p

(6.11)

so that expression (6.8), putting (6.10) and (6.11) in (6.9), is reduced to

λp

(
β

2sinh(βτ)

)
|τ |1/2p

χp

(
− β

2
y22 coth(βτ)

)
Ω

(
|y2
τ
|p
)

= Ω(|y2|p),(6.12)

for |τ |p ≥ 1, and

λp

(
β

2sinh(βτ)

)
λp

(
β
2 coth(βτ)

)χp

(
− β

2
y22 tanh(βτ)

)
Ω(|y2|p) = Ω(|y2|p),(6.13)

for |τ |p < 1.

We will now inspect the conditions under which relation (6.8), equivalently (6.12)
and (6.13), is valid for |y2|p ≤ 1. Before that, let us once again stress that potentially
quite important consequences of the (non)existence of the p-adic (adelic) vacuum
state. Conditions for existence of the Ω-function ”shed” light on possible values for
”time”, ”energy”, free parameters of the theory (such as β), etc.

6.1. Case |τ |p ≥ 1

Case |τ |p > 1 (and |y2|p ≤ 1) reduces (6.8) to (6.12) which, obviously, is never
possible, while for |τ |p = 1 gives

λp

(
β

2sinh(βτ)

)
χp

(
− β

2
y22 coth(βτ)

)
Ω(|y2|p) = Ω(|y2|p).(6.14)

Because |β2 y
2
2 coth(βτ)|p = |y22 |p ≤ 1, then χp

(
− β

2 y
2
2 coth(βτ)

)
= 1 (due to

{β
2 y

2
2 coth(βτ)}p = 0), reducing (6.14) to the form

λp

(
β

2sinh(βτ)

)
= 1.(6.15)
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Arithmetic function λp

(
β

2sinh(βτ)

)
is equal to 1 for ord

(
β

2sinh(βτ)

)
-even (recall

(5.5)). In this case,
 β

2sinh(βτ)


p
= 1

|τ |p = 1 and it means that ord

(
β

2sinh(βτ)

)
= 0,

i.e. even. Thus, relation (6.8) is valid for |τ |p = 1.

6.2. Case |τ |p < 1

Case |τ |p < 1 gives us the relation (6.13), i.e.

λp

(
β

2sinh(βτ)

)
λp

(
β
2 coth(βτ)

)χp

(
− β

2
y22 tanh(βτ)

)
Ω(|y2|p) = Ω(|y2|p).(6.16)

Now, |β2 y
2
2 tanh(βτ)|p = |β2y22τ |p, and the case |β2y22τ |p ≤ 1 leads the additive

character to be equal to one, χp(−β
2 y

2
2 tanh(βτ)) = 1. The last expression then

reduces to

λp

(
β

2sinh(βτ)

)
λp

(
− β

2
coth(βτ)

)
= 1.(6.17)

To prove this equality is valid, we use series expansion of the cosh function [4]

cosh (βτ) =
∞∑
k=0

(βτ)2k

(2k)!
.(6.18)

In other words, cosh (βτ) can be represented in the canonical form (as any p-adic
number)

cosh (βτ) = pγ(c0 + c1p+ ...) = p0(1 + ...).(6.19)

In the last expression γ = 0 and we explicitly wrote only the first term (digit c0)
from the series expansion (which is equal to 1), i.e we omitted the second and all
higher terms in (6.18).

This p-adic function is the square of another p-adic function (in other way, for
fixed β and τ , the p-adic number cosh (βτ) is the square of another p-adic number)
as long as it is analytic, i.e. for |βτ |p ≤ 1/p, because the necessary and sufficient
conditions for the existence of the solution D ∈ Qp of equation [4]

cosh (βτ) = D2,(6.20)

are

i) γ is even,
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ii)

(
c0
p

)
= 1.

In our case, both conditions i) and ii) are satisfied,

γ = 0,(6.21)

(
c0
p

)
=

(
1

p

)
= +1, p ̸= 2.(6.22)

In this way, the left hand side of the expression (6.17) can be written

λp

(
β

2sinh(βτ)

)
λp

(
− β

2
coth(βτ)

)
=

λp

(
β

2sinh(βτ)

)
λp

(
− β

2 sinh (βτ)
cosh(βτ)

)
=

λp

(
β

2sinh(βτ)

)
λp

(
− β

2 sinh (βτ)
D2

)
=

λp

(
β

2sinh(βτ)

)
λp

(
− β

2 sinh (βτ)

)
= 1,(6.23)

where we used properties (5.4).

Expression (6.16) is not valid for the case |β2y22τ |p > 1. Thus, relation (6.13)
is valid for |τ |p < 1 and |β2y22τ |p ≤ 1. In other words, our p-adic quantum system
is in its vacuum state, during the ”p-adic time” |τ |p < 1, as long as |β2y22τ |p ≤ 1
holds (for p ̸= 2).

Let us add that fixing the condition for Ω state for the case p = 2 is a straight-
forward, but time consuming task, and will be presented elsewhere.

7. Discussion and Conclusion

We investigate inverse cosh potential for the system initially described by the
DBI tachyon Lagrangian. We are to consider or ”mimic” a higher-dimensional
tachyon field as a nonrelativistic quantum particle, and discuss its evolution on: real
space, p-adic space (in principe for any prime p), and adelic space, to be presented
elsewhere in details. In order to calculate the propagator on real and p-adic spaces
we chose a more convenient classically and locally equivalent Lagrangian, and used
the Feynman approach for obtaining the propagator. We found in the p-adic case
(for p ̸= 2) that necessary conditions for the existence of ground states in the form
of the characteristic Ω-function:

Ψvac
p (y) = Ω(|y|p), for

{
|τ |p = 1,
|τ |p < 1, |β2y22τ |p ≤ 1.

(7.1)
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At a glance, there is no restriction on the (values of) parameter β in the case
|τ |p = 1, while the case |τ |p < 1 leads to the condition |β|2p ≤ |y−2

2 τ−1|p.
However, there is another important condition we should have in mind: analyt-

icity of p-adic sinh(βτ) and cosh(βτ) functions, which appear in our calculations
from the very beginning, in the expression for the solution of the equation of motion.
These functions consist of a p-adic exponential function exp (βτ), which is analytic
for |βτ |p ≤ 1/p (p ̸= 2) [4], and this analyticity condition also holds for sinh and
cosh. This means that there is one more condition to be included.

The existence of the Ω-function is unavoidable for the construction of any adelic
model. Note that the Ω-function is a counterpart of the Gaussian exp (−πy2) in the
real case (y ∈ R), since it is invariant with respect to the Fourier transform [2].

For the theory in consideration, the adelic ground states would be of the form

Ψ(ya) = Ψ∞(y∞)
∏
p∈M

Ψp(yp)
∏
p/∈M

Ω(|yp|p),(7.2)

where M is a finite set of primes p, while y∞ ∈ R and yp ∈ Qp defines an adele ya,
i.e. a sequence of the form

ya = (y∞, y2, y3, ...yp, ...),(7.3)

Ψ∞(y∞) are the corresponding real (counterparts of the) wave functions of the
theory, and Ψp(yp) are our p-adic ground state wave function (7.1).

The usual probability interpretation of the wave function (7.2) will lead to

|Ψ(ya)|2∞ = |Ψ∞(y∞)|2∞
∏
p∈M

|Ψp(yp)|2∞
∏
p/∈M

|Ω(|yp|p)|2∞.(7.4)

Using the p-adic solution in the form of Ω-function and solution in the real case, it
follows

|Ψ(ya)|2∞ =

{
|Ψ∞(y∞)|2∞, ya ∈ Z

0, ya ∈ Q \ Z.(7.5)

This leads to some discretization of coordinates y∞, because for all rational points
density probability is nonzero only in the integer points of y∞. This depends on
the adelic quantum state of the theory and is a generic feature of adelic models for
the theories with quadratic Lagrangians.

At the end, from the p-adic sector of the model it is clear that there are a few
strong conditions (for p ̸= 2 and |y2|p ≤ 1) for the possible values of:

”time” τ

|τ |p ≤ 1,(7.6)

parameter β

|β|p ≤ 1

p|τ |p
,(7.7)
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and, in general
|β2y22τ |p ≤ 1,(7.8)

in order to exist p-adic ground state in the form of the Ω-function. An implicit dis-
cretization of space-time attached to the model is present, however, its explicit form
needs further investigation, in particular the case p = 2. Also, the question regard-
ing the existence of a ground state for complex eigenvalues and the (non)existence
of a ground state for real energy eigenvalues in the real case also needs further
investigation and discussion. A good understanding of the tachyon field dynam-
ics would allow us to compare theoretical predictions for tachyonic inflation (with
cosh−1(βτ) or another potential) with the newest result of PLANCK satelite and
other forthcoming ”missions”.
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Appendix

In this Appendix we will check the validity of the group property (for p ̸= 2)∫
Qp

Kp(y3, τ3; y2, τ2)Kp(y2, τ2; y1, τ1)dy2 = Kp(y3, τ3; y1, τ1),(8.1)

for the p-adic propagator

Kp(yf , τf ; yi, τi) = λp

(
β

2sinh(β(τf − τi)

) β

sinh(β(τf − τi))

1/2

p
×

χp

(
− β

2

((
y2f + y2i

)
coth(β(τf − τi))− 2yfyicsch(β(τf − τi))

)
)

)
.(8.2)

Using properties (6.6), the last expression for the propagator becomes

Kp(yf , τf ; yi, τi) = λp

(
β

2sinh(β(τf − τi)

) 1

τf − τi

1/2

p
×

χp

(
− β

2

((
y2f + y2i

)
coth(β(τf − τi))− 2yfyicsch(β(τf − τi))

)
)

)
.(8.3)
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Now, the left hand side of the group property expression reads

λp

(
β

2sinh(β(τ3 − τ2)

)
λp

(
β

2sinh(β(τ2 − τ1)

) 1

(τ3 − τ2)(τ2 − τ1)

1/2

p
×∫

Qp

[
χp

(
− β

2

((
y23 + y22

)
coth(β(τ3 − τ2))− 2y3y2csch(β(τ3 − τ2))

)
)

)
χp

(
− β

2

((
y22 + y21

)
coth(β(τ2 − τ1))− 2y2y1csch(β(τ2 − τ1))

)
)

)]
dy2.(8.4)

It is more suitable to introduce

△ij =
2

β
sinh(β(τi − τj)),(8.5)

with the p-adic norm (recalling p ̸= 2)

|△ij |p =
 2

β
sinh(β(τi − τj))


p
=

 1

τi − τj


p
.(8.6)

The product of two additive characters can be written

χp

(
− β

2

((
y23 + y22

)
coth(β(τ3 − τ2))− 2y3y2csch(β(τ3 − τ2))

)
)

)
×

χp

(
− β

2

((
y22 + y21

)
coth(β(τ2 − τ1))− 2y2y1csch(β(τ2 − τ1))

)
)

)
=

χp

(
− y23 cosh(β(τ3 − τ2))

△32
− y21 cosh(β(τ2 − τ1))

△21

)
×

χp

(
−
[
cosh(β(τ3 − τ2))

△32
+

cosh(β(τ2 − τ1))

△21

]
y22

)
×

χp

(
2

[
y3
△32

+
y1
△21

]
y2

)
.(8.7)

Introducing A and B (which do not depend on y2) as

A = −cosh(β(τ3 − τ2))

△32
− cosh(β(τ2 − τ1))

△21
,(8.8)

B = 2

(
y3
△32

+
y1
△21

)
,(8.9)

expression (8.7) takes simpler form

χp

(
− β

2

((
y23 + y22

)
coth(β(τ3 − τ2))− 2y3y2csch(β(τ3 − τ2))

)
)

)
×
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χp

(
− β

2

((
y22 + y21

)
coth(β(τ2 − τ1))− 2y2y1csch(β(τ2 − τ1))

)
)

)
=

χp

(
− y23 cosh(β(τ3 − τ2))

△32
− y21 cosh(β(τ2 − τ1))

△21

)
×

χp

(
Ay22 +By2

)
.(8.10)

Using (8.10), the expression (8.4) becomes

λp

(
1

△32

)
λp

(
1

△21

) 1

(τ3 − τ2)(τ2 − τ1)

1/2

p
×

χp

(
− y23 cosh(β(τ3 − τ2))

△32
− y21 cosh(β(τ2 − τ1))

△21

)
×∫

Qp

χp

(
Ay22 +By2

)
.(8.11)

This integral can be calculated, with the solution [4]

I∗ =

∫
Qp

χp

(
Ay22 +By2

)
= λp(A)

1

|A|1/2p

χp

(
− B2

4A

)
, A ̸= 0.(8.12)

Having in mind (8.8) and (8.9)

|A|p =
 τ3 − τ1
(τ3 − τ2)(τ2 − τ1)


p
,(8.13)

B2

4A
=

(△32y1 +△21y3)
2

△31△32△21
,(8.14)

so that (8.12) becomes

I∗ = λp

(
− cosh(β(τ3 − τ2))

△32
− cosh(β(τ2 − τ1))

△21

)
× (τ3 − τ2)(τ2 − τ1)

τ3 − τ1

1/2

p
χp

(
− (△32y1 +△21y3)

2

△31△32△21

)
,(8.15)

and (8.11) turns to

1

|τ3 − τ1|1/2p

λp

(
1

△32

)
λp

(
1

△21

)
×

λp

(
− cosh(β(τ3 − τ2))

△32
− cosh(β(τ2 − τ1))

△21

)
×

χp

(
− y23 cosh(β(τ3 − τ2))

△32
− y21 cosh(β(τ2 − τ1))

△21

)
×

χp

(
− (△32y1 +△21y3)

2

△31△32△21

)
.(8.16)
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Using some basic properties of sinh (which are the same as in the real case), △21

and △32 can be put in the forms

△21 =
2

β
sinh(β(τ2 − τ1)) =

2

β
sinh(β(τ2 − τ3 + τ3 − τ1)) =

△31 cosh(β(τ3 − τ2))−△32 cosh(β(τ3 − τ1)),(8.17)

△32 =
2

β
sinh(β(τ3 − τ2)) =

2

β
sinh(β(τ3 − τ1 + τ1 − τ2)) =

△31 cosh(β(τ2 − τ1))−△21 cosh(β(τ3 − τ1)),(8.18)

so that the product of additive characters in (8.16) gives exactly

χp

(
− 1

△31
(y23 + y21) cosh(β(τ3 − τ1))− 2

y3y1
△31

)
,(8.19)

i.e.

χp

(
− β

2

((
y23 + y21

)
coth(β(τ3 − τ1))− 2y3y1csch(β(τ3 − τ1))

)
)

)
.(8.20)

Now, the left hand side of (8.1) (i.e. (8.4)) looks like

1

|τ3 − τ1|1/2p

λp

(
1

△32

)
λp

(
1

△21

)
λp

(
− cosh(β(τ3 − τ2))

△32
− cosh(β(τ2 − τ1))

△21

)
×

χp

(
− β

2

((
y23 + y21

)
coth(β(τ3 − τ1))− 2y3y1csch(β(τ3 − τ1))

)
)

)
.(8.21)

The part which was not simplified and calculated until now is the product of
three λ-functions

λp

(
1

△32

)
λp

(
1

△21

)
×

λp

(
− cosh(β(τ3 − τ2))

△32
− cosh(β(τ2 − τ1))

△21

)
.(8.22)

We will now transform the third λ-function in (8.22). To do that, we will use
the well known properties

λp(a)λp(b) = λp(a+ b)λp

(
1

a
+

1

b

)
,(8.23)

λp(a)λp(−a) = 1.(8.24)

Having in mind (6.20), we can write

cosh (β(τ3 − τ2)) = D2
1, cosh (β(τ2 − τ1)) = D2

2,(8.25)
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and using the second property from (5.4) together with (8.23) and (8.24), we get

λp

(
− cosh(β(τ3 − τ2))

△32
− cosh(β(τ2 − τ1))

△21

)
=

λp

(
− cosh(β(τ3−τ2))

△32

)
λp

(
− cosh(β(τ2−τ1))

△21

)
λp

(
− △32

cosh(β(τ3−τ2))
− △21

cosh(β(τ2−τ1))

) =

λp

(
− D2

1

△32

)
λp

(
− D2

2

△21

)
λp

(
− △32

cosh(β(τ3−τ2))
− △21

cosh(β(τ2−τ1))

) =

λp

(
− 1

△32

)
λp

(
− 1

△21

)
λp

(
− △32 cosh(β(τ2−τ1))+△21 cosh(β(τ3−τ2))

cosh(β(τ3−τ2)) cosh(β(τ2−τ1))

) =

λp

(
− 1

△32

)
λp

(
− 1

△21

)
λp

(
− △32 cosh(β(τ2−τ1))+△21 cosh(β(τ3−τ2))

D2
1D

2
2

) =

λp

(
− 1

△32

)
λp

(
− 1

△21

)
λp

(
−△32 cosh(β(τ2 − τ1))−△21 cosh(β(τ3 − τ2))

) .(8.26)

It is easy to check that the argument of the λ-function in the denominator is equal
to −△31,

△31 = △32 cosh(β(τ2 − τ1)) +△21 cosh(β(τ3 − τ2)),(8.27)

so that expression (8.26) becomes

λp

(
1

△32

)
λp

(
1

△21

)λp

(
− 1

△32

)
λp

(
− 1

△21

)
λp

(
−△31

) =
1

λp

(
−△31

) .(8.28)

Using
1

λp

(
−△31

) = λp

(
△31

)
= λp

(
1

△31

)
.(8.29)

we can rewrite the expression (8.22)
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λp

(
1

△32

)
λp

(
1

△21

)
×

λp

(
− cosh(β(τ3 − τ2))

△32
− cosh(β(τ2 − τ1))

△21

)
= λp

(
1

△31

)
,(8.30)

or in a more compact form

λp

(
1

△32

)
λp

(
1

△21

)
λp

(
− △31

△32△21

)
= λp

(
1

△31

)
.(8.31)

Finally, using (8.20), (8.31) and having in mind (8.5), the left-hand side of (8.1)
becomes

λp

(
β

2 sinh(β(τ3 − τ1))

) 1

τ3 − τ1

1/2

p
×

χp

(
− β

2

((
y23 + y21

)
coth(β(τ3 − τ1))− 2y3y1csch(β(τ3 − τ1))

)
)

)
,(8.32)

which is exactly the expression for the propagator Kp(y3, τ3; y1, τ1). Thus, the group
property (8.1) is explicitly shown and confirmed.
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Department of Physics
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18000 Nǐs, Serbia

mmilan@seenet-mtp.info




