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CANONICAL APPROACH TO THE CLOSED STRING
NON-COMMUTATIVITY ∗

Ljubica Davidović, Bojan Nikolić and Branislav Sazdović

Abstract. We consider the propagation of the closed bosonic string in the weakly
curved background. We show that the closed string non-commutativity is essentially
connected to the T-duality and nontrivial background. From the T-duality transfor-
mation laws, connecting the canonical variables of the original and T-dual theory, we
find the structure of the Poisson brackets in the T-dual space corresponding to the
fundamental Poisson brackets in the original theory. We find that the commutative
original theory is equivalent to the non-commutative T-dual theory, in which Poisson
brackets close on winding and momenta numbers and the coefficients are proportional
to the background fluxes.

1. Introduction

Recently, in Refs. [1, 2] the non-commutativity of the closed string coordinates was
found to exist in the presence of the nontrivial background fields fluxes. In these
papers the different T-dual backgrounds of the three dimensional torus were consid-
ered. Refs. [1, 2] motivated us to investigate the closed string non-commutativity.
Here we present a different approach, based on the canonical method and an analogy
with the open string non-commutativity investigated in [3].

The open string non-commutativity has a source in a Kalb-Ramond field [4, 5].
In the constant background only the open string endpoints attached to a Dp-brane
are non-commutative, with the non-commutativity parameter proportional to the
Kalb-Ramond field.

For the open string described by the action

S(x) = κ

∫
Σ

(
ηαβ

2
Gµν + εαβBµν)∂αx

µ∂βx
ν ,(1.1)
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the minimal action principle in addition to the equation of motion produces the
boundary conditions as well. Solving the boundary conditions, one obtains the
expression for the initial coordinate xµ, in terms of the effective coordinate qµ and
the effective momenta pµ (which are even parts of the original coordinates and
momenta)

xµ = qµ − 2Θµν

∫ σ

dσ1pν(σ1) .(1.2)

Here, the non-commutativity parameter Θµν is defined in terms of the effective
metric GE

µν by

Θµν = − 2

κ
(G−1

E BG−1)µν , GE
µν = (G− 4B2)µν .(1.3)

Because the original coordinates xµ are the linear combination of both effective
coordinates and momenta, using the relation {qµ(σ), pν(σ̄)} = 2δµνδs(σ, σ̄) one
obtains

{xµ(0), xν(0)} = −2Θµν , {xµ(π), xν(π)} = 2Θµν .(1.4)

So, the ends of the open string attached to Dp-brane become non-commutative in
a presence of the constant Kalb-Ramond field Bµν . If the action does not contain
the Kalb-Ramond field then there is no non-commutativity, because the solution
depends only on the effective coordinate qµ.

The open string non-commutativity follows from the fact that original coordinate
can be expressed in terms of the effective coordinates and effective momenta. This
relation is a consequence of the boundary conditions at the open string endpoints.
The closed string does not have endpoints. So, to follow the analogy with open string
we are going to express coordinates of the closed string in terms of coordinates and
momenta of some other theory. We are going to show that for some background
fields we can take T-dual theory as that other theory.

We consider the weakly curved background which depends on all the coordinates.
In paper [6] we proposed the T-dualization procedure for such a background, which
is the generalization of the well known Buscher procedure [7]. T-dualising all the
coordinates we find the T-dual theory, and the transformation laws between the
original and T-dual coordinates. We express these laws in the canonical form,
and use them to find the relation between Poisson brackets in the original and T-
dual spaces. From the transformation laws we obtain that the original coordinates
depend on both T-dual coordinates and T-dual momenta. Herefrom one obtains
the closed string non-commutativity, and T-duality is a way to observe it. T-duals
of all the Poisson brackets between coordinates close on the winding numbers and
momenta of the T-dual background. The coefficients are fluxes introduced in [1, 2].

The term of the action with constant part of the Kalb-Ramond field bµν is
topological and consequently it does not contribute to the equations of motion. In
the open string case it contributes to the boundary conditions and it is a source of the
open string non-commutativity. In the closed string case it is absent from boundary
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conditions as well. Classically we can gauge it away and Kalb-Ramond field becomes
infinitesimally small. But, if bµν = 0 one loses topological contributions. In order
to investigate the global structure of the theory with holonomies of the world sheet
gauge fields in quantum theory we should preserve this term.

2. T-duality

T-duality is the symmetry which exist only in string theories [8]. It is a consequence
of the fact that the fundamental objects in these theories are extended objects and
not the point particles. T-duality connects physically equivalent theories giving
effectively different prescriptions of a string, described while moving in the different
background fields and therefore different space-times.

If one coordinate in original theory is compactified on the circle of radius R and
one coordinate in the T-dual theory is compactified on the circle on radius R̃, then
the mass squared of any state

M2 =
n2

R2
+m2 R

2

α′2 + oscillators ,(2.1)

is invariant under transformation

n ↔ m, R ↔ R̃ ≡ α′/R .(2.2)

Here the numbers n and m are integers which denotes momentum and winding
modes. The complete spectrums of the T-dual theories are the same.

It can be shown that the T-dual action ⋆S has the same form as initial one but
with different background fields. The T-dual metric and T-dual Kalb-Ramond field

⋆Gµν ∼ (G−1
E )µν , ⋆Bµν ∼ Θµν ,(2.3)

are proportional to the effective metric and non-commutativity parameter from
the open string case. One can compare the original and T-dual Hamiltonian and
obtain the canonical T-dual transformation laws. When string moves in the constant
background then these laws are of the following form

πµ
∼= κy′µ ,

⋆πµ ∼= κx′µ .(2.4)

The momenta are T-dual to the sigma derivatives of the dual coordinates and vice
versa. Note that coordinates do not depend on dual coordinates but only on dual
momenta. So, because momenta commute for constant background there is no
closed string non-commutativity

{πµ, πν} = 0 =⇒ {yµ, yν} = 0 .(2.5)
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3. Weakly curved background

We have learned that T-duality is not enough to establish closed string non-commu-
tativity. We should generalize the background fields. The weakly curved back-
ground is the simplest coordinate dependent solution of the space time equations
for the background fields [9]. It consists of the constant metric Gµν = const and
the coordinate dependent Kalb-Ramond field

Bµν = bµν +
1

3
Hµνρx

ρ ≡ bµν + hµν(x),(3.1)

where bµν and Hµνρ are constant and Hµνρ is infinitesimal.

The standard Buscher’s T-dualization procedure [7] is not applicable for the
coordinate dependent backgrounds which depend on all the space-time coordinates.
So, we generalized it.

The generalized Buscher’s construction [6] has three steps. First is to gauge the
global symmetry δxµ = λµ, which is a symmetry even if Bµν is linear in coordinate,
and substitute the ordinary derivative with the covariant one

∂αx
µ → Dαx

µ = ∂αx
µ + vµα ,(3.2)

where vµα are gauge fields. Second is to substitute the coordinate in the argument
of the background fields with its invariant extension

xµ → ∆xµ
inv =

∫
P

dξαDαx
µ,

which is the line integral of the covariant derivatives of the original coordinate.
With this substitutions one finds the gauged action. In order to obtain equivalent
theories we require that gauge fields should be nonphysical. So, third step is to
add a new term to the lagrangian yµF

µ where yµ is Lagrange multiplier and Fµ

is a field strength of the gauge fields vµα. The T-dual action is obtained on the
solution of the equations of motion for the gauge fields. It is defined on the doubled
geometry with coordinates (yµ, ỹµ), where ẏ

µ = ỹ′µ and ˙̃yµ = y′µ. So, the coordinate
from the original space is replaced by two coordinates xµ → (yµ, ỹµ). The T-dual
background fields equal

⋆Gµν = (G−1
E )µν(∆V ) , ⋆Bµν =

κ

2
Θµν(∆V ),(3.3)

and the T-dual action is of the form

⋆S =
κ2

2

∫
d2ξ∂+yµΘ

µν
− (∆V )∂−yν ,(3.4)

where

V µ = −κΘµν
0 yν + (g−1

E )µν ỹν ,(3.5)
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and

Θµν
± (x) = − 2

κ

(
G−1

E (x)Π±(x)G
−1

)µν
, Π±µν = Bµν(x)±

1

2
Gµν .(3.6)

T-dual transformation laws are obtained comparing the solutions of the equa-
tions of motions for the gauge fixed actions with respect to the Lagrange multipliers
and gauge fields

∂±x
µ = −κΘµν

± (∆V )∂±yν ∓ 2κΘµν
0±β

∓
ν (V ) ,(3.7)

∂±yµ = −2Π∓µν(∆x)∂±x
ν ∓ β∓

µ (x) ,(3.8)

where

β±
µ (x) = ∓1

6
Hµρσ∂∓x

ρxσ .(3.9)

Expression for β±
µ comes from the term∫

d2ξvµ+Bµν(δV )vν− =

∫
d2ξβα

µ (V )δvµα .(3.10)

The transformation laws can be presented in the canonical form as

x′µ =
1

κ
⋆πµ − κΘµν

0 β0
ν(V )− (g−1

E )µνβ1
ν(V ) ,(3.11)

y′µ =
1

κ
πµ − β0

µ(x) .(3.12)

The infinitesimal quantities βα
µ are an improvement in comparison to the flat space

case. Also, as we will see, they are the source of a non-commutativity.

4. Non-commutativity of the closed string canonical variables

Finally, we are ready to consider closed string non-commutativity, as we introduced
both necessary components, the T-duality and the weakly curved background. The
canonical T-dual transformation law (3.12) express the dual coordinates yµ in terms
of the original coordinates xµ and momenta πµ. Let us take the following Poisson
bracket in the original theory

{xµ(σ), πν(σ̄)} = δµν δ(σ − σ̄), {xµ(σ), xν(σ̄)} = 0, {πµ(σ), πν(σ̄)} = 0,(4.1)

and find the corresponding Poisson brackets of the T-dual theory.

Using T-duality transformation law (3.12), we search for the corresponding Pois-
son structure in T-dual theory i.e. the expressions for the Poisson brackets between
the T-dual string coordinates yµ(σ), ỹµ(σ) and momenta ⋆πµ(σ). This is done
considering the brackets between

∆Yµ(σ, σ0) =

∫ σ

σ0

dη Y ′
µ(η) = Yµ(σ)− Yµ(σ0),(4.2)
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Yµ = (yµ, ỹµ) and calculating the equal time commutators. The fact that T-dual
coordinates under T-duality transform to both coordinate and momenta dependent
expressions, enables non-commutativity. The relation of the form

{X ′
µ(σ), Y

′
ν(σ̄)} ∼= K ′

µν(σ)δ(σ − σ̄) + Lµν(σ)δ
′(σ − σ̄),(4.3)

implies the following relation between coordinates

{Xµ(τ, σ), Yν(τ, σ̄)} ∼= − [Kµν(σ)−Kµν(σ̄) + Lµν(σ̄)] θ(σ − σ̄) ,(4.4)

where θ(σ) is the periodic step function

θ(σ) =

 0 if σ = 0
1/2 if 0 < σ < 2π, σ ∈ [0, 2π].
1 if σ = 2π

(4.5)

Using the transformation law (3.12), we can calculate Poisson brackets {y′µ, y′ν},
{y′µ(σ), ỹ′ν(σ̄)} and {ỹ′µ(σ), ỹ′ν(σ̄)}. We can re-express them in terms of fluxes:

Christoffel connection corresponding to the effective metric GE
µν

ΓE
µ,νρ =

1

2

(
∂νG

E
µρ + ∂ρG

E
µν − ∂µG

E
νρ

)
= −4

3

(
Bµσν(G

−1b)σρ +Bµσρ(G
−1b)σν

)
,

(4.6)

and the coefficient of the dual Kalb-Ramond field

Qµν
ρ = −1

3

[
(g−1)µσ(g−1)ντ − κ2θµσ0 θντ0

]
Bστρ ,(4.7)

defined by the relation ⋆Bµν(∆V ) = ⋆bµν +Qµν
ρ∆V ρ. We have

1. {y′µ, y′ν}

Kµν [x] =
3

κ
hµν [x] =

1

κ
Bµνρx

ρ, Lµν = 0,(4.8)

2. {y′µ, ỹ′ν}

Kµν [x, x̃] =
3

κ
hµν [x̃]−

6

κ

[
h[x]G−1b+ bG−1h[x]

]
µν

=
1

κ
Bµνρx̃

ρ − 3

2κ
ΓE
ρ,µνx

ρ,

Lµν [x] =
1

κ
gµν − 6

κ

[
h[x]G−1b+ bG−1h[x]

]
µν

=
1

κ
gµν − 3

2κ
ΓE
ρ,µνx

ρ,(4.9)

with

x̃′µ =
1

κ
(G−1)µνπν + 2(G−1B)µνx

′ν .(4.10)
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3. {ỹ′µ, ỹ′ν}

Kµν [x] =
3

κ
hµν [x] +

24

κ

[
bh[x]b

]
µν

+
6

κ

[
h[x̃]b− bh[x̃]

]
µν

= − 1

κ

[
Bµνρ − 6gµαQ

αβ
ρgβν

]
xρ

+
[
− 3

2κ

(
ΓE
µ,νρ − ΓE

ν,µρ

)
+

4

κ
Bµνσ(G

−1b)σρ

]
x̃ρ.

Lµν = 0 .(4.11)

For the above values of K and L, the relation (4.4) gives

{yµ(σ), yν(σ̄)} ∼= − 1

κ
Bµνρ

[
xρ(σ)− xρ(σ̄)

]
θ(σ − σ̄),

(4.12)

{yµ(σ), ỹν(σ̄)} ∼= −
{ 1

κ
Bµνρ

[
x̃ρ(σ)− x̃ρ(σ̄)

]
− 3

2κ
ΓE
ρ,µν

[
xρ(σ)− xρ(σ̄)

]
+
1

κ
gµν − 3

2κ
ΓE
ρ,µν x

ρ(σ̄)
}
θ(σ − σ̄),(4.13)

{ỹµ(σ), ỹν(σ̄)} ∼= −
{
− 1

κ

[
Bµνρ − 6gµαQ

αβ
ρgβν

][
xρ(σ)− xρ(σ̄)

]
+
[
− 3

2κ

(
ΓE
µ,νρ − ΓE

ν,µρ

)
+

4

κ
Bµνσ(G

−1b)σρ

][
x̃ρ(σ)− x̃ρ(σ̄)

]}
·

·θ(σ − σ̄) .(4.14)

After two-dimensional reparametrizations, the σ dependent part takes the form[
Xµ(f(σ))−Xµ(f(σ̄))

]
θ[f(σ)− f(σ̄)],

where f(σ) is monotonically increasing function with properties f(0) = 0 and
f(2π) = 2π. Therefore, Poisson bracket between different points is not repara-
metrization invariant. For fixed points, it can be fit to be arbitrary small, by the
appropriate choice of the function f(σ). So, only Poisson brackets at the same point
are physically significant.

Taking σ = σ̄ we obtain that all Poisson brackets vanish, and consequently, co-
ordinates commute. But, taking σ = σ̄+2π, in the non-commutativity relation be-
tween the dual coordinates y’s (4.12), we obtain the closed string non-commutativity
relation

{yµ(σ + 2π), yν(σ)} ∼= −2π

κ
BµνρN

ρ,(4.15)

where

Nµ =
1

2π
[xµ(σ + 2π)− xµ(σ)] ,(4.16)
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is winding number for the initial coordinate xµ. This result is in agreement with
Ref.[2]. Similarly, from (4.13) and (4.14), we obtain

{yµ(σ + 2π), ỹν(σ)}+ {yµ(σ), ỹν(σ + 2π)} ∼=

−4π

κ2
Bµνρp

ρ +
π

κ

(
3ΓE

ρ,µν − 8Bµνλb
λ
ρ

)
Nρ,(4.17)

and

{ỹµ(σ + 2π), ỹν(σ)} ∼=
2π

κ

[
−Bµνρ − 6gµαQ

αβ
ρgβν + 2Bµν

λgλρ

+ 3
(
ΓE
µ,νλ − ΓE

ν,µλ

)
bλρ

]
Nρ

+
π

κ2

[
3
(
ΓE
µ,νρ − ΓE

ν,µρ

)
pρ − 8Bµνλb

λ
ρ

]
pρ .(4.18)

Using (4.10) and integrating from σ to σ + 2π we have

1

2π
[x̃µ(σ + 2π)− x̃µ(σ)] =

1

κ
(G−1)µνpν + 2(G−1)µρbρλN

λ ,(4.19)

where

pµ =
1

2π

∫ σ+2π

σ

dηπµ(η) .(4.20)

To complete the algebra we add the following relations

{yµ(σ), ⋆πν(σ̄)} ∼= δµ
νδ(σ − σ̄) + κhµρ[x(σ)]θ

ρν
0 δ(σ − σ̄)

+ κhµρ[x
′(σ̄)]θρν0 θ(σ − σ̄) ,(4.21)

{ỹµ(σ), ⋆πν(σ̄)} ∼=
[
− 2bG−1 − 3h[x(σ)]G−1 − 2κbh[x(σ)]θ0

] ν

µ
δ(σ − σ̄)

−
[
3h[x′(σ̄)]G−1 + 2κbh[x′(σ̄)]θ0

] ν

µ
θ(σ − σ̄),(4.22)

{⋆πµ(σ), ⋆πν(σ̄)} ∼= 0.

(4.23)

Because the T-dual momenta ⋆πµ are bilinear in original coordinates, their
Poisson bracket vanishes. The Poisson bracket between T-dual coordinates and
momenta however gains the additional term linear in coordinates.

In doubled space the additional coordinate ỹµ appears. It consists of the term
linear in original momenta and the other terms bilinear in original coordinates. So,
it produces nontrivial Poisson brackets with all variables (yµ, ỹµ,

⋆πµ), (4.13), (4.14)
and (4.22).

5. Concluding remarks

We showed that we need two ingredients in order to have closed string non-commu-
tativity: T-duality and nontrivial background. The T-dual transformation laws
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connect the world-sheet derivatives of the coordinates and momenta in the original
and T-dual theory. The T-dual coordinates yµ has two terms: one linear in original
momenta and the other bilinear in original coordinates. This produces the nontrivial
Poisson bracket {yµ, yν} (4.12) which is linear in coordinate. Consequently, the
nontrivial infinitesimal expression β0

µ, which exists only in the coordinate dependent
backgrounds, is the source of the closed string non-commutativity. Note that in the
case of open string moving in the flat background coordinate is linear function in
both effective momenta and coordinates. So, the corresponding Poisson bracket is
constant.

The general structure of the non-commutativity relations is

{Yµ(σ), Yν(σ̄)} = {Fµνρ [x
ρ(σ)− xρ(σ̄)] + F̃µνρ [x̃

ρ(σ)− x̃ρ(σ̄)]}θ(σ − σ̄) ,(5.1)

where Yµ = (yµ, ỹν) and Fµνρ and F̃µνρ are constant and infinitesimal fluxes. At the
same points, for σ = σ̄, all Poisson brackets are zero. In the important particular
case for σ = σ̄ + 2π we get

{Yµ(σ + 2π), Yν(σ)} = 2π

[
(Fµνρ + 2F̃µναb

α
ρ )N

ρ +
1

κ
F̃µν

ρpρ

]
,(5.2)

where Nµ and pµ are winding numbers and momenta of the original theory. We
can rewrite it in the form

{Yµ(σ + 2π), Yν(σ)} =

∮
Cρ

Fµνρdx
ρ +

∮
C̃ρ

F̃µνρdx̃
ρ ,(5.3)

where Cρ and C̃ρ are cycles around which the closed string is wrapped. This gen-
eralizes the conjecture of Ref.[10] between closed string non-commutativity and
fluxes.
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