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Abstract. Michael addition of diethyl malonate, ethyl acetoacetate, acetylacetone, and 

cyanide anion to acryloylferrocene promoted by a catalyst in situ generated from a 

sacrificial zirconium anode is described. Most of the obtained compounds were 

identified by comparison of their spectral and physical data with those published 

elsewhere, whereas the only newly synthesized compound - diethyl 2,2-bis(3-

ferrocenyl-3-oxopropyl)malonate - was completely characterized by spectral (IR, 1H- 

and 13C-NMR), physical and crystallographic (single-crystal X-ray)  data. 

Key words: electrolysis, zirconium, sacrificial anode, Michael addition, 

acryloylferrocene, dicarbonyls, cyanides 

1. INTRODUCTION 

Zirconium compounds have been widely used in organic synthesis, since they are 

commercially available (or well described in the literature), easily handled, of low 

toxicity, and of high catalytic activity in many reactions. They are known to catalyze 

different organic reactions, such as Ferrier rearrangement (Swamy et al., 2004; Smitha 

and Sanjeeva Reddy, 2004), Fries rearrangement (Harrowven and Dainty, 1996), Friedel-
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Crafts acylation (Heine et al., 1946), sodium borohydride reduction (Itsuno et al., 1988, 

1990; Purushothama Chary et al. 1999, 2000), multicomponent condensations affording 

dihydropyrimidinones (Venkateshwar Reddy et al, 2002) and -aryl--mercaptoketones 

(Kumar and Akanksha, 2007), Pechmann reactions (Karami and Kiani, 2011) etc. (Curini 

et al., 2004; Firouzabadi and Jafarpour, 2008; Zhang and Li, 2009). Catalytic activity of 

different zirconium compounds in Michael conjugate addition of nucleophiles to α,β-

unsaturated carbonyls has also been recognized by organic chemists and used in organic 

synthesis. In this regard, both types of nucleophiles - those with a heteroatom as the 

nucleophilicity carrier and C-nucleophiles were successfully used (Curini et al., 2004; 

Firouzabadi and Jafarpour, 2008; Zhang and Li, 2009). In continuation of our permanent 

interest in both the electrochemical generation of catalysts (Vukićević et al., 1991, 1998) 

and ferrocene chemistry (Vukićević et al., 2002; Damljanović et al.,  2014), we recently 

reported on a new and versatile method for the electrochemical generation of a catalyst 

capable of promoting the Ferrier rearrangement and hetero-Michael conjugate addition of 

N- and S-nucleophiles to methyl vinyl ketone, using a sacrificial zirconium anode 

(Stevanović et al., 2012). Now, we decided to examine whether this technique is suitable 

for the formation of new C-C bonds by Michael addition of C-nucleophiles to a 

conjugate enone. For this purpose we have chosen acryloylferrocene (1, Scheme 1) as the 

Michael acceptor and diethyl malonate (2a), ethyl acetoacetate (2b), acetylacetone (2c), 

and the cyanide anion as the Michael donors.  

2. RESULTS AND DISCUSSION  

The present investigations were initiated having in mind the experience gained in 
performing hetero-Michael addition and Ferrier rearrangement promoted by a catalyst 
generated in situ from a zirconium sacrificial anode (Stevanović et al., 2012). Thus, we 
have chosen an acetonitrile solution of lithium perchlorate as the reaction medium and 

submitted a 1:1 mixture (one mmol scale) of enone 1 and diethyl malonate (2a) (Scheme 
1) to a constant current electrolysis (20 mA) in an undivided electrolytic cell, using a 
zirconium spiral as the anode and a platinum spiral as the cathode. Initial experiments 
revealed that the electrochemical oxidation of zirconium produced species insoluble in 
acetonitrile which coated the anode and passivated it, causing an uncontrolled increase of 
the electrode voltage and heating of the solution (up to boiling) due to the electrical 
resistance increase. However, the cell was afterwards placed in an ultrasonic bath and in 
this way the species generated by the anode were simultaneously removed from the 
electrode surface. 

 

Scheme 1 Michael addition of dicarbonyls 2a-c to enone 1  

catalyzed by an electrochemically generated zirconium catalyst 
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Knowing that the reactions promoted by zirconium compounds were usually 

performed using up to 10 mol% of the catalyst (Smitha and Sanjeeva Reddy, 2004), the 

electrolysis time was estimated to provide 0.4 Fmol-1 charge consumption, i.e., to 

provide the generation of 0.1 mmol of a certain compound of tetravalent zirconium in a 

one mmol scale experiment. After the electrolysis, the mixture was additionally stirred 

for half an hour at room temperature and worked up in a usual way. The raw reaction 

mixture was chromatographed (SiO2/hexane-ethyl acetate, 8:2, v/v) to give two products, 

which, on the basis of spectral data (IR, 1H- and 13C-NMR), were identified as 

compounds 3a and 4a (Scheme 1). Compounds 3a and 4a were isolated in 34% and 11% 

yield, respectively (Run 1, Table 1). 

Table 1 Michael addition of dicarbonyls 2a-c to enone 1  

catalyzed by an electrochemically generated zirconium catalyst  

Run Dicarbonyl Solvent Electrolyte 
Reaction 

conditions 

Reactants 

ratio (1/2)a) 

Yield of products (%)b) 

3 4 Ratio 3/4a) 

1 2a MeCN 0.1 M LiClO4 A 1:1 34 11 76:24 

2 2a MeCN 0.1 M LiClO4 A 2:1 17 5 72:28 

3 2a MeCN 0.1 M LiClO4 B 1:1 36 10 78:22 

4 2a MeCN 0.1 M LiClO4 A 1:2 38 9 81:19 

5 2a MeCN 0.1 M LiClO4 C 1:1 33 10 77:23 

6 2a EtOH 0.1 M NaClO4 A 1:1 23 3 88:12 

7 2a EtOH 0.1 M NaClO4 B 1:1 25 4 86:14 

8 2a EtOH 0.1 M NaClO4 C 1:1 24 5 83:17 

9 2a EtOH 0.1 M NaClO4 B 1:2 39 2 95:5 

10 2a EtOH 
0.05 M NaClO4,  

0.05 M AcONa 
D 1:2 70 6 92:8 

11 2b EtOH 
0.05 M NaClO4,  

0.05 M AcONa 
D 1:2 32 Traces - 

12 2c EtOH 
0.05 M NaClO4,  

0.05 M AcONa 
D 1:2 56 Traces - 

a)mol/mol; 
b)Yield of isolated products; 

Reaction conditions: A) 0.4 Fmol-1; 0.5 h stirring after the electrolysis.  

B) 0.4 Fmol-1; overnight stirring after the electrolysis. C) 0.8 Fmol-1; 0.5 h stirring after the electrolysis.  

D) 0.4 Fmol-1; 0.5 h irradiation in an ultrasonic bath after the electrolysis. 

Since compound 4a is, apparently, a product of Michael addition of 3a to 1, in the 

following experiment, we performed electrolysis under the same reaction conditions, but 

using reactants in the ratio 1/2a = 2:1, expecting an increased yield of 4a. However, the 

result was an almost doubled decrease of the yields of both 3a and 4a (see Run 2, Table 1). 

Due to the failure of our effort to improve the yield of compound 3a [by stirring the 

reaction mixture after the electrolysis overnight (Run 3, Table 1), using a double amount 

of malonate 2a (Run 4, Table 1) and introducing a double amount of the catalyst (Run 5, 

Table 1)], we decided to change the solvent/supporting electrolyte system. Ethanol and 

sodium perchlorate were chosen and the next four experiments (runs 6-9, Table 1) were 

conducted under the same conditions as those with the acetonitrile/lithium perchlorate 

system. As the data listed in Table 1 show, the results were similar, except that the ratio 

of products (3a/4a) was somewhat higher.  
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The highest yield of compound 3a (69.5%) was achieved when the reaction was 

performed in an ethanol solution of sodium perchlorate and sodium acetate (0.05 M each) 

(Run 10, Table 1). Afterwards, the other two dicarbonyl compounds were submitted to 

the same reaction conditions and yielded ketoester 3b and dione 3c. However, the yields 

of the corresponding Michael adducts were considerably lower than in the case of 

malonate 2a (compare runs 11 and 12 with run 10, Table 1). Interestingly, compounds 4b 

and 4c were not isolated from the mixtures obtained by reacting 2b and 2c with enone 1; 

TLC analysis of the reaction mixtures revealed trace-bands of compounds more polar 

than compounds 3b and 3c, that we attributed to compounds 4b and 4c. 

 

Scheme 2 The plausible mechanism of Michael addition dicarbonyls 2a-c to enone 1 

catalyzed by an electrochemically generated zirconium catalyst 

The proposed mechanism of the Michael reaction described in the present paper is 

depicted in Scheme 2. First of all, after establishing an electrical circuit, an oxidative 

dissolution of zirconium took place, since this metal is the most susceptible system 

component to oxidation. We do not know (at this moment) the exact nature of the 

generated catalyst, but from an organic chemist point of view that is for the time being 
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less important than the fact that it acts as a successful catalyst. Electrolyses were 

performed without the electrode potential control; therefore this oxidation should give 

the most stable zirconium cation, i.e., some species of tetravalent zirconium. It might be 

either zirconium or zirconyl perchlorate (Zr(ClO4)4, or ZrO(ClO4)2, respectively). Due to 

the known susceptibility of Zr(ClO4)4 to hydrolysis (Babaeva and Rosolovskii, 1977), we 

believe that the catalyst was more likely to be ZrO(ClO4)2, since all experiments were 

performed with non-dried solvents. Once generated, the zirconium compound (whatever 

it is) acts as a Lewis acid and plays an important role in the prearrangement of both 

enone 1 and dicarbonyls 2 for the Michael addition (by establishing of intermediates I 

and II, as depicted in Scheme 2). The reaction of these species leads to the formation of a 

new C-C bond, i.e., to the formation of intermediate III, which smoothly undergoes 

hydrolysis to final products 3. 

 

Scheme 3 Michael addition of cyanide anion to enone 1 in ethanol,  

catalyzed by an electrochemically generated zirconium catalyst 

Additionally, we decided to investigate the reaction of acryloylferrocene (1) with 

cyanides under the conditions allowing an in situ generation of a zirconium catalyst, 

expecting an addition of this anion to the enone system of 1, i.e. ferrocene-containing 

ketonitrile 5 (Scheme 2) as the product. 

Table 2 Michael addition of cyanide anion to enone 1 catalyzed by an 

electrochemically generated zirconium catalyst 

Run Solvent Electrolyte 
Reaction 

conditions 

Reactants ratio 

(1/CN)a) 

Yield of products (%)b) 

5 6 Ratio 5/6a) 

1 EtOH 
0.05 M NaClO4,  

0.05 M AcONa 
D 1:2 24 48 33:67 

2 EtOH 
0.05 M NaClO4,  

0.05 M AcONa 
D 1:0  - - - 

3c) EtOH 
0.05 M NaClO4,  

0.05 M AcONa 
D 1:2 33 41 46:54 

4 EtOH 
0.05 M NaClO4,  

0.05 M AcONa 
В 1:2 34 44 46:54 

5 MeCN 0.1 M LiClO4 A 1:2 41 - - 
a)mol/mol; 

b)Yield of the isolated products; 
b)Sodium cyanide was added after the electrolysis was completed; 

Reaction conditions: For reaction conditions, see Table 1. 
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For the first experiment we chose the conditions found to be the best for the Michael 

addition of malonate 2a to enone 1. Thus, a 1:2 mixture of 1 and sodium cyanide in an 

ethanol solution of sodium perchlorate and sodium acetate was electrolyzed and the obtained 

mixture ultrasonicated for additional 30 min. After the usual work-up, the expected product, 

ketonitrile 5, was obtained, but it turned out that the addition of the cyanide anion to the 

conjugate enone system of 1 was not the only reaction that proceeded under these conditions. 

In addition to that, the main part of the consumed enone 1 underwent the oxa Michael 

addition, i.e., the addition of ethanol, giving ketoether 6, so that the ratio 5/6 amounted to 

33:67 (see Run 1, Table 2). In a subsequent experiment, we performed the electrolysis 

without sodium cyanide, ultrasonicated the obtained mixture for 30 min and, under these 

conditions, the addition of ethanol to the enone 1 did not take place (see Run 2, Table 2). 

When, however, sodium cyanide was added to the mixture obtained in this way and 

ultrasonicated for 30 min, the mixture containing both 5 and 6 was obtained again, but the 

abundance of 5 was slightly higher (36%; 5/6 = 46:54; see Run 3, Table 2). Almost the same 

result was obtained when the reaction was performed by electrolysis of the mixture of enone 

1 and sodium acetate, and after that the obtained reaction mixture stirred at room temperature 

overnight (see Run 4, Table 2). 

The mechanism of this reaction could be similar to that presented in Scheme 2 for the 

addition of carbonyls 2a-c. The key event is the formation of intermediate I (Scheme 2), 

which readily undergoes the addition of cyanide anion and, of course, the addition of 

ethanol. However, it seems strange, at the first glance, that the addition of ethanol to 

enone 1 did not proceed in the presence of only the generated catalyst (see Run 2, Table 

1), but took place when, in addition to the catalyst, cyanides were present. This could be 

rationalized by the fact that sodium cyanide is highly susceptible to protolysis, and that 

ethanol is a protic, polar solvent in which this process can proceed readily (see Scheme 

3). The ethoxide formed in this way must compete with cyanide as the Michael donor. 

Most of the obtained products are previously known compounds and their spectral 

data were in complete agreement with those published elsewhere (Pejović et al., 2013). 

The only new compound obtained by these investigations was 4a, and its spectral data 

were in good agreement with the proposed structure. In addition, this compound was a 

crystalline solid, and its crystal and molecular structures were determined by single-

crystal X-ray analysis. The molecule of 4a contains two halves which are equal in 

composition and they are denoted by suffixes A and B in the atomic labels (Fig. 1). Some 

of the corresponding structural fragments exhibit significant conformational differences. 

The largest difference in the C1−C11−C12−C13−C17 chain is in the value of 

C1−C11−C12−C13 torsion angle [173.9(2) and 141.6(3)° for A and B fragments, 

respectively]. As a consequence, two ferrocene units display different spatial orientations 

with respect to the rest of the molecule, as well as different intermolecular interactions in the 

crystal packing. However, both ferrocene units in 4a adopt the same eclipsed conformation. 

The two terminal C15−C16 ethyl groups also exhibit significantly different orientations 

[The C14−O3−C15−C16 torsion angle is 78.6(4) and 159.2(4)° for A and B, 

respectively]. The corresponding bond distances and angles in the two halves of 4a have 

very similar values (Table 3). As expected the central carbon atom C17 forms the longest 

C−C bonds in the molecules [1.536(4), 1.548(4), 1.538(4) and 1.528(4) Å for C17−C13a, 

C17−C13b, C17−C14a and C17−C14b, respectively]. 
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Fig. 1 The molecular structure of 4a. Displacement ellipsoids are drawn at 30% 

probability level. CCDC 1411212 contains the supplementary crystallographic 

data for this compound, which can be obtained free of charge via 

http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge 

Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: 

+44 1223 336 033; or e-mail: deposit@ccdc.cam.ac.uk. 

Table 3 Selected bond distances (Å) in the crystal structure of 4a 

Bond Fragment A Fragment B 

C1−C11 1.477(4) 1.472(4) 

C14A−C17 1.538(4) 1.528(4) 

O1−C11 1.213(3) 1.210(4) 

O2−C14 1.189(3) 1.189(4) 

O3−C14 1.341(3) 1.342(4) 

O3−C15 1.463(4) 1.461(4) 

In conclusion, herein we presented an original protocol for the formation of new C-C 

bonds by a Michael addition of dicarbonyl compounds 2a-c and cyanide anion to the 

enone system of acryloylferrocene (1) promoted by a catalyst generated in situ from a 

sacrificial zirconium anode. Although the number of substrates used as Michael donors 

was rather limited, our investigations clearly showed that this method is a good 

alternative for the existing catalytic protocols, since it represents an easy procedure that 

does not require expensive or complex equipment. 

http://www.ccdc.cam.ac.uk/conts/retrieving.html
mailto:deposit@ccdc.cam.ac.uk
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3. EXPERIMENTAL  

3.1. General remarks 

All chemicals were commercially available and used as received, except that the 

solvents were purified by distillation. Compound 1 was synthesized by a known 

procedure (Damljanović et al., 2011). Electrolyses were carried out in an undivided cell 

using an Autolab potentiostat and a Uniwatt, Beha Labor-Netzgerät (NG 394). A glass 

vessel equipped with a spiral Zr-anode ( = 15 mm, made from a  = 2 mm wire) and a 

spiral Pt-cathode ( = 8 mm, made from a  = 1 mm wire) was used as the electrolytic 

cell. Chromatographic separations were carried out using silica gel 60 (Merck, 230–400 

mesh ASTM), whereas silica gel 60 on Al plates, layer thickness 0.2 mm (Merck) was 

used for TLC. Melting points were determined on a Mel-Temp capillary melting points 

apparatus, model 1001 and are uncorrected. IR measurements were carried out with a 

Perkin-Elmer FTIR 31725-X spectrophotometer. NMR spectra were recorded on a 

Bruker Avance III (400 MHz) spectrometer and a Varian Gemini (200 MHz) 

spectrometer, using (CD3)2SO and CDCl3 as the solvents and TMS as the internal 

standard. Chemical shifts are expressed in δ (ppm). Ultrasonic cleaner Elmasonic S 10, 

30W, was used for the ultrasonically supported syntheses. 

3.2. General synthetic procedure 

The electrolytic cell was filled with 20 mL of the corresponding electrolyte solution 

(see Tables 1 and 2), 240 mg (1 mmol) of enone 1 and the corresponding amount of 

compounds 2a-c (1, 2 or 0.5 mmol; see Table 1) or sodium cyanide (one experiment was 

performed without sodium cyanide and one by the addition of this salt after the 

completion of the electrolysis; see Table 2). The cell was placed in an ultrasound bath (at 

a frequency of 37 kHz, with an effective ultrasonic power of 30 W and a peak of 240 W) 

and constant current electrolysis (20 mA) was run for 32 min (0.4 F·mol-1) at room 

temperature. After the electrolysis was finished, the reaction mixture was left 30 min in 

the same bath or stirred overnight (see Tables 1 and 2) and, afterwards, the solvent 

evaporated. The residue was diluted with 20 mL of water, the obtained mixture extracted 

with three 20 mL portions of diethyl ether and the pooled organic layers dried overnight 

(anhydrous sodium sulfate). After the evaporation of the solvent, the crude reaction 

product was separated by column chromatography [SiO2/hexane-ethyl acetate, 8:2 

(reaction mixtures obtained from 2a-c) or 7:3 (reaction mixtures obtained from sodium 

cyanide), v/v] to give the pure products. The obtained results are given in Tables 1 and 2. 

The spectral data of compounds 3a-c, 5 and 6 were in complete agreement with those 

published elsewhere (Pejović et al., 2013), whereas the data of 4a follow. 

Diethyl 2,2-bis(3-ferrocenyl-3-oxopropyl)malonate (4a). M.p. 113 °C. IR (KBr, ν, 

cm-1) 2978, 2012, 1752, 1724, 1658, 1449, 1375, 1245, 1185, 1167, 1072, 1002, 825, 

815. 1H NMR (200 MHz, CDCl3) δ 4.80 (pseudo t, J = 1.9 Hz, 4H, 2×C5H4), 4.50 

(pseudo t, J = 1.9 Hz, 4H, 2×C5H4), 4.26 (q, J = 7.1 Hz, 4H, 2×OCH2CH3), 4.21 (s, 10H, 

2×C5H5), 2.85 – 2.72 (m, 4H, 2×COCH2CH2), 2.42 – 2.29 (m, 4H, 2×COCH2CH2), 1.31 

(t, J = 7.1 Hz, 6H, 2×OCH2CH3). 
13C NMR (50 MHz, CDCl3) δ 203.0, 171.2, 78.7, 

72.30, 69.8, 69.3, 61.5, 56.5, 34.7, 27.9, 14.2.  
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3.3. X-ray crystal structure analysis of 4a 

The diffraction data for a selected single crystal of compound 4a were collected at 

room temperature with an Oxford Diffraction Xcalibur Gemini S four-circle diffractometer 

equipped with a Sapphire CCD detector, using Mo Kα radiation (λ = 0.71073 Å). Data 

integration and scaling of the reflections were performed with the CRYSALIS software 

(CrysAlisPro, 2012a). Empirical absorption corrections of the diffracted intensities were 

performed by SCALE3 ABSPACK (CrysAlisPro, 2012b) scaling algorithm implemented 

in the CRYSALIS suite. 

The crystal structure was solved by direct methods using SIR2002 (Burla et al., 2012) as 

implemented in WINGX (Farrugia, 1999) program package. Structural refinements were 

done by full-matrix least-squares method based on F2
 using SHELXL program (Sheldrick, 

2008). Hydrogen atoms attached to carbon atoms were placed at geometrically idealized 

positions with C–H distances fixed to 0.96, 0.97 and 0.93 Å from methyl, methylene and 

cyclopentadiene C atoms, respectively. The isotropic displacement parameters of the 

hydrogen atoms were equal to 1.2 Ueq of the parent methylene and cyclopentadiene C atoms 

and 1.5 Ueq of the methyl C atoms. The crystallographic data are listed in Table 1. The 

PARST (Nardelli, 1983) program was used to perform geometrical calculation and the 

program ORTEP (Farrugia, 1997) was employed for the preparation of molecular graphics. 
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ELEKTROHEMIJSKO GENERISANJE KATALIZATORA  

ZA MAJKLOVU ADICIJU DIKARBONILNIH JEDINJENJA 

I CIJANIDA NA AKRILOILFEROCEN 

Opisana je Majklova adicija dietil-malonata, etil-acetoacetata, acetilacetona i cijanidnog anjona na 

akriloilferocen pomoću katalizatora generisanog in situ sa rastvorne anode od cirkonijuma. Većina 

dobijenih jedinjenja je identifikovana poređenjem njihovih fizičkih i spektroskopskih podataka sa 

literaturnim, a jedino novo jedinjenje je potpuno opisano spektroskopskim (IR, 1H- i 13C-NMR) i fizičkim 

podacima, kao i podacima iz kristalografske analize X-zracima. 

Ključne reči: elektroliza, cirkonijum, rastvorna anoda, Majklova adicija, akriloilferocen, 

dikarbonili, cijanidi 
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