KINETIC–SPECTROPHOTOMETRIC APPROACH TO THE AMPICILLIN HYDROLYTIC DEGRADATION APPLIED FOR THE HISTIDINE DETERMINATION

Ivana D Rašić Mišić, Snežana B Tošić, Emilija T Pecev-Marinković, Danijela A Kostić, Biljana B Arsić

DOI Number
https://doi.org/10.2298/FUPCT2201041R
First page
041
Last page
054

Abstract


The objective of this research was to develop a kinetic-spectrophotometric method for the determination of microquantities of L-histidine in pure form and dietary supplements. The method was based on the kinetics of ampicillin degradation by Ni(II) ion as a catalyst in the presence of L-histidine in a strongly alkaline medium. The rate of this reaction was monitored spectrophotometrically by measuring the increase in absorbance at 265 nm as a function of time. The same approach was used for the investigation of the reaction rate in the absence of histidine. A differential variant of the tangent method was used to process the kinetic data. Beer’s law was obeyed in the interval of histidine concentration from 1.24 µg/ml to 11.63 µg/mlwith the relative standard deviation ranging from 8.1% to 0.7%. The detection limit of 0.46 µg/ml was estimated based on the 3S0 criterion. The interference effects of some metal ions, anions, and other molecules on the reaction rate were studied to assess method selectivity. Herein described method was applied for the quantification of histidine in dietary supplements. The point hypothesis test confirmed that there was no significant difference between the proposed and the reference method.

Keywords

ampicillin, hydrolytic degradation, Ni(II), L-histidine, activator

Full Text:

PDF

References


Abbaspour, A., Ghaffarinejad, A., Safaei, E., 2004. Talanta, 64, 1036-1040. https://doi.org/10.1016/j.talanta.2004.05.013

Alevridis, A., Tsiasioti, A., Zacharis, C.K., Tzanavaras, P.D., 2020. Molecules, 25, 1665. https://doi.org/10.3390/molecules25071665

Ambrose, J.A., Crimm, A., Burton, J., Paullin, K., Ross, C., 1969. Clin. Chem., 15, 361-366. https://doi.org/10.1093/clinchem/15.5.361

Bhandare, P, Madhavan, P., Rao, B.M., Someswar rao, N., 2010. J. Chem. Pharm. Res, 2, 580-586.

J. Ermer, J., 2001. J. Pharm. Biomed. Anal. 24, 755–767. https://doi.org/10.1016/S0731-7085(00)00530-6

Farias, P.A.M., Castro, A.A., Wagener, A.L.R., Miguel, E.M., Cabral, O. V., 2008. Anal. Lett., 41, 1248-1266. https://doi.org/10.1080/00032710802052742

Feng, R.N., Niu, Y.C., Sun, X.W., Zhao, C., Wang, C., Guo, F.C., Sun, C.H., Li, Y., 2013. Diabetologia, 56, 985-94. https://doi.org/10.1007/s00125-013-2839-7

Gamsjager, H., Bugajski, J., Gajda, T., Lemire, R.J., Preis, W., 2005. Chemical Thermodynamics of Nickel, in: Mompean, F.J., Illemassene, M., Perrone, J. (Eds.), Chemical Thermodynamics Vol. 6, first ed. Elsevier Science, Amsterdam, pp. 99-102.

Gerber, D.A., 1970. Anal. Biochem., 34, 500-504. https://doi.org/10.1016/0003-2697(70)90135-1

Gerber, D.A., Tanenbaum, L., Ahrens, M., 1976. Metabolism, 25, 655-657. https://doi.org/10.1016/0026-0495(76)90062-7

Horn, M.J., Jones, D.B., Blum, A.E., 1948. J. Biol. Chem., 172, 149-154. https://doi.org/10.1016/S0021-9258(18)35623-0

Hou, P.J., Poole, W.J., 1969. J. Pharm. Sci., 58, 447–454. https://doi.org/10.1002/jps.2600580412

Hun, X., Xu, Y., Bai, L., 2015. Microchim. Acta., 182, 565–570. https://doi.org/10.1007/s00604-014-1359-6

Jaselskis, B., 1958. Anal. Chem., 30, 1968-1971. https://doi.org/10.1021/ac60144a025

Jiao, Y., Liu, Q., Qiang, H., 2018. Microchim. Acta, 185, 452. https://doi.org/10.1007/s00604-018-2987-z

Kiba, N., Koga, A., Tachibana, M., Tani, K., Koizumi, H., Koyama, T., Yamamura, A., Matsumoto, K., Okuda, T., Yokotsuka, K., 2006. Anal. Sci., 22, 95-98. https://doi.org/10.2116/analsci.22.95

Kirkbright, G.F., 1966. Talanta, 13, 1-14. https://doi.org/10.1016/0039-9140(66)80119-4

McKee, T., McKee, J.R., 1996. Biochemistry, Wm. C. Brown Publishers, Chicago.

Mitić, S.S., Miletić, G. Ž., Petrović, A.N., Tošić, S.B., 2004. Oxid. Commun., 27, 453-462.

Moreira, J.C., Fogg, A.G., 1991. Analyst, 116, 249-252. https://doi.org/10.1039/AN9911600249

Newman, P.M., Turnbull, J.H., 1960. Biochem. J., 74, 379-382. https://doi.org/10.1042/bj0740379

Patel Vandana, V.B., Patel, K.N., Shah, M.M., Mayank, B., 2009. Int. J. PharmTech Res., 1, 852-856.

Perez-Bendito, D., Silva, M., 1988. Kinetic Methods in Analytical Chemistry, Ellis Horwood, Chichester.

Rabbani, G.H., Sack, D.A., Ahmed, S., Peterson, J.W., Saha, S.K., Marni, F., Thomas, P., 2005. J. Infect. Dis., 191, 1507-1514. https://doi.org/10.1086/428449

Rašić Mišić, I., Miletić, G., Mitić, S., Mitić, M., Pecev-Marinković, E., 2013. Chem. Pharm. Bullet., 61, 913-919. https://doi.org/10.1248/cpb.c13-00197

Razavi, F., Khajehsharifi, H., 2021. Chem. Pap., 75, 3401–3410. https://doi.org/10.1007/s11696-021-01548-4

Robinson-Fuentes, V.A., Jefferies, T.M., Branch, S.K., 1997. J. Pharm. Pharmacol., 49, 843–851. https://doi.org/10.1111/j.2042-7158.1997.tb06124.x

Reeves, R.D., Barbour, G.L., Robertson, C.S., Crumb, C.K., 1977. Am. J. Clin. Nutr., 30, 579-81. https://doi.org/10.1093/ajcn/30.4.579

Shieh, P., Cheng, S., Kuo, D.H., Fu, W., Hsu, M., Chen, F., 2007. Chin. Pharm. J., 59, 141-148. DOI:10.7019/TPJ.200709.0141

Staden, R.-I.S.-V., Holo, L., 2007. Sens. Actuators B Chem., 120, 399-402. https://doi.org/10.1016/j.snb.2006.02.033

Stampina, E., Tsiasioti, A., Klimatsaki, K., Zacharis, C.K., Tzanavaras, P.D., 2021. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1173, 122697. https://doi.org/10.1016/j.jchromb.2021.122697

“The Yugoslav Pharmacopoeia 2000 (in Serbian)”, fifth ed., book 1, Republic Insittute for Health Protection and Development and Modern Administration, Belgrade, 2001. Jugoslovenska farmakopeja 2000, 5. Izdanje, knjiga 1, Savezni zavod za zastitu i unapredjenje zdravlja i Savremena administracija, Beograd 2001.

Zhu, L.D. Li, Y.X., Zhu, G.Y., 2002. Chin. Chem. Lett.,13, 1093-1096.


Refbacks

  • There are currently no refbacks.


ISSN 0354-4656 (print)

ISSN 2406-0879 (online)