APPLICATION OF MEMBRANE TECHNOLOGY IN THE TREATMENT AND ANALYSIS OF TRIAZINE PESTICIDES IN WATER
Abstract
The quality of consumable water is decreasing due to increasing water pollution caused by the production and use of human-made chemicals. A significant part of these chemicals are pesticides from the class of triazines since they are widely used in agriculture as herbicides. Water treatment techniques mainly rely on separation science, where the membrane technology has been identified as the most useful. Membrane processes used in water treatment are microfiltration, ultrafiltration, nanofiltration and reverse osmosis. In general, the pollutant retention/rejection by membranes depends on the physicochemical properties of the membrane i.e. membrane material, porosity, pore size and on the properties of the pollutant molecule i.e. size, length, width, molecular weight, hydrophobicity or dipole moment. The pollutant retention also depends on the feed-water composition (organic matter and salt presence, solute concentration, water pH). Thus, effective water treatment depends on the selection of an appropriate type of membrane for a particular type of pollutants. Membrane technology is also significant because it is used in polluted water analysis, more precise as a part of a liquid-phase or solid-phase microextraction. Among several developed membrane-based microextraction methods, in triazine polluted water analysis common are membrane-protected solid-phase microextraction and hollow-fiber liquid-phase microextraction. In this field, researchers tend to achieve membrane-pollutant compatibility through the synthesis of polymeric materials with molecular recognition properties i.e. through a technology called molecular imprinting.
HIGHLIGHTS
- Among several water treatment techniques, the membrane technology has been identified as the most robust and flexible one.
- The most common water pollutants are triazine pesticides since they are widely used in agriculture as herbicides.
- The triazines retention by membranes depends on the membrane and triazine molecule properties, but also on the feed-water composition.
- Thanks to the molecular imprinting technology, membrane technology has found its application in polluted water analysis as a part of sample preparation.
Keywords
Full Text:
PDFReferences
Abate, G., Masini, J.C., 2005. J. Agric. Food Chem. 53, 1612–1619. doi: 10.1021/jf048556j
Barahona, F., Diaz-Alvarez, M., Turiel, E., Martin-Esteban, A. 2016. J. Chromatogr. A, 1442, 12-18. doi: 10.1016/j.chroma.2016.03.004
Benito-Peña, E., Martins, S., Orellana, G., Moreno-Bondi, M.C., 2009. Anal. Bioanal. Chem. 393, 235–245. doi:10.1007/s00216-008-2405-1
Carasek, E., Merib, J. 2015. Anal. Chim. Acta, 880, 8-25. doi: 10.1016/j.aca.2015.02.049
Chen, S.S., Taylor, J.S., Mulford, L.A., Norris, C.D., 2004. Desalination, 160, 103–111. doi: 10.1016/S0011-9164(04)90000-8
Chen, L.X., Xu, S.F., Li, J.H., 2011. Chem. Soc. Rev. 40, 2922-2942. doi: 10.1039/c0cs00084a
Chen, J., Bai, L., Tian, M., Zhou, X., Zhang, Y. 2014. Anal. Methods, 6, 602-608. doi: 10.1039/c3ay41455h
Gkementzoglou, C., Kotrotsiou, O., Kiparissides, C. 2013. Ind. Eng. Chem. Res. 52, 14001-14010. doi: 10.1021/ie400479c
Karabelas A., Plakas K. 2011. Membrane Treatment of Potable Water for Pesticides Removal. In M. Larramendy (Ed.), Herbicides, Theory and Applications: InTech. doi: 10.5772/13240
La Cecilia D. and Maggi F. 2017. J. Cont. Hydr. 203, 104-121. doi: 10.1016/j.jconhyd.2017.05.004
Ma, Y., Zhang, Y., Zhao, M., Guo, X.Z., Zhang, H.Q., 2012. Chem. Commun. 48, 6217-6219. doi: 10.1039/c2cc31932b
Madsen, H. T., Søgaard, E. G. 2014. Sep. Purif. Technol. 125, 111-119. doi: 10.1016/j.seppur.2014.01.038
Musbah, I., Cicéron, D., Saboni, A., Alexandrova, S. 2013. Desalination, 313, 51-56. doi: 10.1016/j.desal.2012.11.016
Palma, P., Fialho, S., Alvarenga, P., Santos, C., Bras, T., Palma, G., Cavaco C., Gomes R., Neves, L. A. 2016. Sci. Total Environ. 568, 998-1009. doi: 10.1016/j.scitotenv.2016.04.208
Plakas, K. V., Karabelas, A. J. 2009. J. Membrane Sci. 336, 86-100. doi: 10.1016/j.memsci.2009.03.020
Plakas, K. V., Karabelas, A. J. 2011. Sep. Purif. Technol. 80, 246-261. doi: 10.1016/j.seppur.2011.05.003
Rakhshan, N., Pakizeh, M. 2015. Sep. Purif. Technol. 147, 245-256. doi: 10.1016/j.seppur.2015.04.013
Rakhshan, N., Pakizeh, M. 2016. J. Ind. Eng. Chem. 34, 51-60. doi: 10.1016/j.jiec.2015.10.031
Rautenbach R., Albrecht R. 1989. Membrane Processes, John Wiley & Sons, ISBN 0-471-91110-0, New York
Ritter W. F., Scarborough R. W., Chirnside A. E. M. 1994. J. Cont. Hydr. 15(1), 73-92. doi: 10.1016/0169-7722(94)90011-6
Sanagi, M. M., Muhammad, S. S., Hussain, I., Ibrahim, W. A., Ali, I. 2015. J Sep Sci, 38, 433-438. doi: 10.1002/jssc.201400912
Singh, R. 2015. Introduction to Membrane Technology. In R. Singh (Ed.), MEMBRANE TECHNOLOGY AND ENGINEERING FOR WATER PURIFICATION; Application, Systems Design and Operation (Second ed.): Butterworth-Heinemann. doi:10.1016/B978-0-444-63362-0.00001-X
Sotto, A., López-Muñoz, M. J., Arsuaga, J. M., Aguado, J., Revilla, A. 2010. Desalin. Water Treat. 21, 175-180. doi: 10.5004/dwt.2010.1372
Turiel, E., Diaz-Alvarez, M., Martin-Esteban, A. 2016. J. Chromatogr. A, 1432, 1-6. doi: 10.1016/j.chroma.2015.11.086
Van der Bruggen, B., Schaep, J., Wilms, D., Vandecasteele, C., 1999. J. Membrane Sci. 156, 29–41. doi: 10.1016/S0376-7388(98)00326-3
Xu, S., Lu, H., Chen, L. 2014. J. Chromatogr. A, 1350, 23-29. doi: 10.1016/j.chroma.2014.05.026
Yang, K.G., Berg, M.M., Zhao, C.S., Ye, L., 2009. Macromolecules, 42, 8739–8746. doi: 10.1021/ma901761z
Yoshikawa, M., Tharpa, K., Dima, S. O. 2016. Chem. Rev. 116(19), 11500-11528. doi: 10.1021/acs.chemrev.6b00098
Refbacks
- There are currently no refbacks.
ISSN 0354-4656 (print)
ISSN 2406-0879 (online)