VOLTAGE DEPENDENT MODELS OF THE FORMATIVE TIME DELAY IN ARGON
Abstract
Measurements of the formative time delay t_f at different working voltages U in argon at low pressure are presented. The well-known decreasing voltage behavior of the formative time delay is theoretical described by different empirical and semiempirical models. In addition to introduced empirical models, some models from the literature are applied to elucidate experimentally obtained t_f(U) dependence. However, the models from the literature show a good agreement with the experimental data only at low overvoltages \DeltaU (\DeltaU=U-U_s where U_s is the static breakdown voltage). Therefore, empirical corrections are made based on data analysis, and good compatibility is achieved in a whole range of working voltages.
HIGHLIGHTS
- Presentation of the formative time delay measurements at different working voltages in argon at low pressure
- Application of empirical and semi-empirical models for description of t_f(U) dependence
- Application of the t_f(U) models from the literature with and without empirical corrections
Keywords
Full Text:
PDFReferences
Chapman, B.N., 1980. Glow discharge processes: sputtering and plasma etching, John Wiley and Sons, New York.
Davidson, P.M., 1955. Phys. Rev. 99, 1072-1974. DOI:https://doi.org/10.1103/PhysRev.99.1072
Druyvesteyn, M.J., Penning, F.M., 1940. Rev. Mod. Phys., 12, 87-174. DOI:https://doi.org/10.1103/RevModPhys.12.87
Dutton, J., Haydon, S.C., Jones, F.L., with mathematical appendix by P.M. Davidson, 1953. Brit. J. Appl. Phys. 4, 170-175. DOI:https://doi.org/10.1088/0508-3443/4/6/303
Fisher, L.H., Bederson B., 1951. Phys. Rev. 81, 109-114. DOI:https://doi.org/10.1103/PhysRev.81.109
Fletcher, R.C., 1949. Phys. Rev. 76, 1501-1511. DOI:https://doi.org/10.1103/PhysRev.76.1501
Fridman, A., 2008. Plasma chemistry, Cambridge University Press, Cambridge, New York.
Gänger, B., 1953. Der elektrische Durchschlag von Gasen, Springer-Verlag, Berlin.
Jaumann G., 1895. Ann. Phys. (Leipzig), 291, 656-683. DOI:10.1002/andp.18952910811
Kachickas, G.A., Fisher, L.H., 1952. Phys. Rev. 88, 878-883. DOI:https://doi.org/10.1103/PhysRev.88.878
Kachickas, G.A., Fisher, L.H., 1953. Phys. Rev. 91, 775-779. DOI:https://doi.org/10.1103/PhysRev.91.775
Kruithof, A.A., 1940. Physica, 7, 519-540. DOI:https://doi.org/10.1016/S0031-8914(40)90043-X
Lieberman, M.A., Lichtenberg, A.J., 1994. Principles of Plasma Discharges and Material Processing, John Willey & Sons, New York.
Maier, W.B., Kadish, A., Buchenauer, C.J., Robiscoe, R.T., 1993. IEEE Ttransactions on plasma science, 21, 676-683. DOI:10.1109/27.256787
Makabe, T., Petrović, Z.Lj., 2006. Plasma Electronics: Applications in Microelectronic Device Fabrication, CRC Press, Taylor & Francis Group, New York.
Marković, V.Lj., Petrović, Z.Lj., Pejović, M.M., 1997. Plasma Sources Sci. Technol. 6, 240-246. DOI:https://doi.org/10.1088/0963-0252/6/2/018
Marković, V.Lj., Gocić, S.R., Stamenković, S.N., Petrović, Z.Lj., 2005. Physics of plasmas, 12, 073502-1-8.
DOI:http://aip.scitation.org/doi/10.1063/1.1942499
Marković, V.Lj., Stamenković, S.N., Gocić, S.R., 2007. Contrib. Plasma Phys., 47, 413-420. DOI: 10.1002/ctpp.200710054
Meek, J.M., Craggs, J.D., (Eds.), 1978. Electrical Breakdown of Gases, John Wiley & Sons, Chichester, pp. 655-688.
Mesyats, G.A., 2005. Pulsed Power, Springer, New York.
Morgan, C.G., 1956. Phys. Rev. 104, 566-571. DOI:https://doi.org/10.1103/PhysRev.104.566
Phelps, A.V., Petrović, Z.Lj., 1999, Plasma Sources Sci. Technol. 8, R21–R44. DOI:https://doi.org/10.1088/0963-0252/8/3/201
Raether, H., 1941.a Z. Phys, 117, 375-398. DOI:https://doi.org/10.1007/BF01676336
Raether, H., 1941.b Z. Phys. 117, 524-542. DOI:https://doi.org/10.1007/BF01668950
Raether H., 1949. Die Entwicklung der Elektronenlawine in den Funkenkanal. In: Flügge S., Trendelenburg F. (eds) Ergebnisse der Exakten Naturwissenschaften. Ergebnisse der Exakten Naturwissenschaften, vol 22. Springer, Berlin, Heidelberg. DOI:https://doi.org/10.1007/978-3-662-25834-7_3
Raizer, Yu.P., 1991. Gas discharge physics, Springer-Verlag, Berlin.
Raju, G.G., 2006. Gaseous electronics: theory and practice, CRC Press, Taylor & Francis Group, Boca Raton.
Schade, R., 1937. Z. Phys. 104, 487-510. DOI:https://doi.org/10.1007/BF01330065
Stamenković, S.N., Marković, V.Lj., Jovanović, A.P., Stankov, M.N., 2017. Romanian reports in physics, 69, 408-1-16.
von Engel A., 1965. Ionized Gases, Clarendon Press, Oxford
Zissis, G., Kitsinelis, S., 2009. J. Phys. D: Appl. Phys., 42, 173001. DOI:https://doi.org/10.1088/0022-3727/42/17/173001
Refbacks
- There are currently no refbacks.
ISSN 0354-4656 (print)
ISSN 2406-0879 (online)