STRUCTURAL, MAGNETIC AND UP-CONVERSION PROPERTIES OF YF3: Yb/Ln (Ln = Er, Tm, Ho) SOLID SOLUTIONS

Jelena Aleksić, Tanja Barudžija, Miodrag Mitrić, Marko Bošković, Zoran Ristić, Ljiljana Kostić

DOI Number
https://doi.org/10.2298/FUPCT2002119A
First page
119
Last page
129

Abstract


In this paper, we investigated YF3: Yb/Er, YF3: Yb/Tm and YF3: Yb/Ho solid solutions prepared by reaction of an appropriate amount of oxides with ammonium difluoride (NH4HF2) as a fluorinating agent. These samples were characterized by X-ray diffraction (XRD), magnetic measurements and up-conversion (UC) photoluminescence spectra. The results show that all samples are single-phase and crystallize in an orthorhombic crystal structure of the β-YF3 structure type. Above 100 K, the measured molar magnetic susceptibility was fitted by the Curie-Weiss law and the average effective magnetic moments for the observed samples were obtained.  All the samples showed a pure paramagnetic behaviour. When doped with lanthanide elements (Yb/Er, Yb/Tm, Yb/Ho), YF3 solid solutions can emit characteristic green, red, blue and near IR light under the excitation of a 980 nm laser diode.

Keywords

lanthanides, up-conversion, X-ray diffraction, magnetic measurements

Full Text:

PDF

References


Aleksić, J., Barudžija, T., Jugović, D., Mitrić, M., Bošković, M., Jagličić, Z., Lisjak, D. and Kostić, Lj., 2020, J Phys Chem Solids, 142, 109449, https://doi.org/10.1016/j.jpcs.2020.109449

Antić B., Mitrić M. and Rodić, D., 1995, J. Magn. Magn. Mater, 145, 349-356, https://doi.org/10.1016/0304-8853(94)01625-9

Atabaev, TS. and Molkenova, A., 2019, Front. Mater. Sci., 13, 335-341, https://doi.org/10.1007/s11706-019-0482-z

Auzel, F., 2003, Chem. Rev., 104, 139-174, https://doi.org/10.1021/cr020357g

Bain, G. and Berry, J., 2008, J. Chem. Educ., 85, 1-5, https://doi.org/10.1021/ed085p532

Blundell, S., 2001, Magnetism in Condensed Matter, Oxford University, New York

Ćirić, A., Aleksić, J., Barudžija, T., Antić, Ž., Đorđević, V,. Medić, M., Periša, J., Zeković, I., Mitrić, M., Dramićanin., M., 2020, Nanomaterials, 10, 1-10, https://doi.org/10.3390/nano10040627

De, G., Qin, W., Zhang, J., Zhang, J., Wang, Y., Cao, C. And Cui Y., 2007, J. Lumin., 122-123, 128-130, https://doi.org/10.1016/j.jlumin.2006.01.120

Ding, M., Lu, C., Cao, L., Ni, Y. And Xu, Z., 2013, Funct. Mater. Lett, 6, 1350061, https://doi.org/10.1142/S1793604713500616

Dramićanin, M., 2018, Luminescence Thermometry, 1st ed. Woodhead Publishing, UK

Duan, C., Liang, Li. And Li. L, 2017, J. Mater. Chem. B, 6, 192-209, https://doi.org/10.1039/C7TB02527K

Escudero, A., Becerro, A., Carrion, C., Nunez, N., Zyuzin, M., Laguna, M., Gonzales-Mancebo. D., Ocana, M. And Parak, W., 2017, Nanophotonics, 6, 881-921, https://doi.org/10.1515/nanoph-2017-0007

Han, L., Wang, Y., Guo, L., Zhao, L. and Tao, Y., 2014, Nanoscale, 6, 5907-5917, https://doi.org/10.1039/C4NR00512K

He, F., Wang, L., Niu, N., Ga, S., Wang, Y. and Yang, P., 2014, J. Nanosci. Nanotechnol, 14, 3503-3508, https://doi.org/10.1166/jnn.2014.7975

Hirose, K., Doi, Y. and Hinatsu, Y., 2009, J. Solid State Chem, 182,1624-1630, https://doi.org/10.1016/j.jssc.2009.04.001

Ho, WJ., Wei, CY., Liu, Jj., Lin, WC. and Ho, CH., 2019, Vacuum, 166, 1-5, https://doi.org/10.1016/j.vacuum.2019.04.046

Li, H., Huang, Q., Wang, Y., Chen, K., Xie, J., Pan, Y., Su, H., Xie, X., Huang, L. and Huang, W., 2017, J. Mater. Chem. C, 5, 6450-6456, https://doi.org/10.1039/C7TC02118F

Liu, TC., Cheng, BM., Hu, SF. And Liu. RS., 2011, Chem. Mater., 23, 3698-3705, https://doi.org/10.1021/cm201289s

Payrer, E. L., Joudrier, A. L., Aschehoug, P., Almeida, RM. and Deschanvres, JL., 2017, J. Lumin, 187, 247-254, https://doi.org/10.1016/j.jlumin.2017.02.051

Rietveld, HM., 1969, J. Appl. Crystallogr, 2, 65-71, https://doi.org/10.1107/S0021889869006558

Rodriguez-Carvajal J., 1993, Physica B, 192, 55-69

Shannon, RD. and Perwitt, CT., 1970, Acta Cryst. B, 26, 1046-1048, https://doi.org/10.1107/S0567740870003576

Steinkemper, H., Fisher, S., Hermle, M. and Goldschmidt JC., 2013, New J. Phys., 15, https://doi.org/10.1088/1367-2630/15/5/053033

Tang, J., Yu, M., Wang, E., Ge, C. and Chen, Z., 2018, Mater. Chem. Phys, 207, 530-533, https://doi.org/10.1016/j.matchemphys.2018.01.017

Tiwari, S., Maurya, S., Yadav, R., Kumar, A., Kumar, V., Joubert, MF. and Swart, H., 2018, J. Vac. Sci. Technol, 36, https://doi.org/10.1116/1.5044596

Wang, S., Song, S., Deng, R., Guo, H., Lei, Y., Cao, F., Li, X., Su, S. and Zhang, H., 2010, CrysEngComm, 12, 3537-3541, https://doi.org/10.1039/C0CE00023J

Weng, F., Chen, D., Wang, Y., Yu, Y., Huang, P. and Lin, H., 2009, CERAM INT., 35, 2619-2623, https://doi.org/10.1016/j.ceramint.2009.02.026

Xiang, G., Zhang, J., Hao, Z., Pan, GH., Chen, L., Luo, Y., Lu, S. and Zhao, H., 2015, J. Colloid Interface Sci, 459, 224-229, https://doi.org/10.1016/j.jcis.2015.08.026

Zalkin, A. and Templeton, DH., 1953, J. Am. Chem. Soc., 75, 2453-2458, https://doi.org/10.1021/ja01106a052

Zhao, Y., Wang, X., Zhang, Y., Li, Y. and Yao, X., 2020, J. Alloys Compd, 817, 152691, https://doi.org/10.1016/j.jallcom.2019.152691

Zhu, X., Li, J., Qiu, X., Liu, Y., Feng, W. and Li, F., 2018, Nat. Commun, 9, https://doi.org/10.1038/s41467-018-04571-4


Refbacks

  • There are currently no refbacks.


ISSN 0354-4656 (print)

ISSN 2406-0879 (online)