FREE FATTY ACID COMPOSITION OF RAMARIA AUREA (SCHAEFF.) QUÉL.

Ana B. Miltojević, Ivan Milovanović, Niko S. Radulović

DOI Number
https://doi.org/10.2298/FUPCT2002099M
First page
099
Last page
107

Abstract


Ramaria aurea (Schaeff) Quél., known as the golden coral, is an edible mushroom with a worldwide distribution, but there are scarce data on its chemical composition. Free fatty acids (FAs) from this fungal species have never been analyzed before, although it is known that FAs are linked with key physiological and biochemical processes and thus, they essential for the proper functioning of various ecosystems. Moreover, there are no literature data on the chemical composition of R. aurea from Serbia. Herein, we report on the GC-MS characterization of a diethyl-ether extract of R. aurea fruit bodies collected in the region of Mt. Mali Jastrebac (central Serbia), with the focus on the free FAs profile, investigated using a method of FA derivatization by diazomethane. The GC-MS analysis enabled the identification of around 60 components, among which more than a half were methyl esters of saturated and unsaturated FAs, comprising 88% of the total extract. The rather diverse and complex free FA profile of R. aurea was dominated by monounsaturated FAs (ca. 35% of the total extract) with oleic acid as the most abundant constituent (ca. 34%). Polyunsaturated and saturated FAs were present in almost equal amounts, ca. 26% and 24%, respectively. The major polyunsaturated FA was linoleic (ca. 26%), while the principal saturated FA was palmitic acid (ca. 15%). The content of total saturated and mono- and polyunsaturated FAs, as well their ratio, could be used as an indicator of the potential nutritional and medicinal use of this mushroom.

Keywords

mushrooms, Ramaria aurea (Schaeff) Quél., free fatty acids, methyl esters, diazomethane derivatization, GC-MS analysis

Full Text:

PDF

References


Abugri, D.A., McElhenney, W.H., Willian, K.R., 2016. J. Exp. Food Chem. 2(1), 108. doi:10.4172/2472-0542.1000108.

Essential fatty acids" in aquatic ecosystems: a crucial link between diet and human health and evolution Arts, M.T., Ackman, R.G., Holub, B.J., 2001. Can. J. Fish Aquat. Sci. 58(1), 122-137. doi:10.1139/f00-224.

Avramiuc, M., 2018. Food Environ. 17(1), 97-102.

Barreira, J.C.M., Ferreira, I.C.F.R., Oliveira, M., Beatriz, P.P., 2012. J. Agric. Food Chem. 60(42), 10592-10599. doi:10.1021/jf302442s.

Bertelsen, C.D., 2013. Mushroom: A Global History, Reaktion Books, London.

Boyden, S., 1973. Ecologist, 3(8), 304-309.

Braeuer, S., Borovička, J., Glasnov, T., Guedes de la Cruz, G., Jensen, K.B., Goessler, W., 2018. Talanta, 188(1), 107-110. doi:10.1016/j.talanta.2018.05.065.

Chang, S.T., Wasser, S.P., 2012. Int. J. Med. Mushrooms, 14(2), 93-134. doi: 10.1615/intjmedmushr.v14.i2.10

Courtecuisse, R., 1999. Mushrooms of Britain & Europe, first ed. Harper Collins Publishers, London.

Fujii, A., Koura, T., Yoshimoto, T., Kawabata, T., Nakamura, Y., Hamamichi, K., Kakimoto, H., Yamada, Y., Yoshioka, M., Yamamoto, M., Hayakawa, K., 2014. J. Radioanal. Nucl. Ch. 300(2), 707-717. doi:10.1007/s10967-014-3060-y.

Ilić-Tomić, T., Genčić, M.S., Živković, M.Z., Vasiljević, B., Djokić, L., Nikodinović-Runić, J., Radulović, N.S., 2015. Appl. Microbiol. Biotechnol. 99(11), 4815-4833. doi:10.1007/s00253-014-6364-5.

Kalač, P., 2009. Food Chem. 113(1), 9-16. doi:10.1016/j.foodchem.2008.07.077.

Khatua, S., Mitra, P., Chandra, S., Achary, K., 2015. J. Herbs Spices Med. Plants, 21(4), 380-391. doi:10.1080/10496475.2014.994085.

Kumar Sharma, S., Gautam, N., 2017. Sci. Rep. 7, 46570. doi:10.1038/srep46570.

Nelson, D.L., Cox, M.M., 2008. Lehninger Principles of Biochemistry, fifth ed. W.H. Freeman and Company, NY, USA.

Leon-Guzman, M.F., Silva, I., Mercedes, L.G., 1997. J. Agr. Food Chem. 45(11), 4329-4332. doi:10.1021/jf970640u.

Maga, J.A., 1981. J. Agr. Food Chem. 29(1), 1-4. doi:10.1021/jf00103a001.

NIST database, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899. https://webbook.nist.gov/chemistry (accessed 25.11.2020.).

Olennikov, D.N., Penzina, T.A., 2014. Chem. Nat. Compd. 50(2), 391-393. doi:10.1007/s10600-014-0965-1.

Pereira, E., Barros, L., Martins, A., Ferreira, I.C.F.R., 2012. Food Chem. 130(2), 394-403. doi:10.1016/j.foodchem.2011.07.057.

Petersen, R.H., Scates, C., 1988. Mycotaxon. 33, 101-144.

Senatore, F., Dini, A., Marino, A., Schettino, O., 1988. J. Sci. Food Agr. 45, 337-345. doi:10.1002/jsfa.2740450408.

Severoglu, Z., Sumer, S., Yalcin, B., Leblebici, Z., Aksoy, A., 2013. Int. J. Environ. Sci. Technol. 10(2), 295-304. doi:10.1007/s13762-012-0139-2.

Van Den Dool, H., Kratz, P.D., 1963. J. Chromatogr. A, 11, 463–471. doi:10.1016/S0021-9673(01)80947-X.


Refbacks

  • There are currently no refbacks.


ISSN 0354-4656 (print)

ISSN 2406-0879 (online)