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Abstract. In this paper we will prove new criteria for the congruence of convex quadrilaterals 

in Hyperbolic geometry and consequently, display the appropriate methodological approach 

in teaching the same. There are seven criteria for the congruence of hyperbolic quadrilaterals, 

while there are five for the congruence of Euclidean quadrilaterals. Using a comparative 

geometric analysis of quadrilateral congruence criteria in Euclidean and Hyperbolic 

geometry we described all possible cases and made a methodological approach to the 

problem. The obtained results can influence the approaches to the study of these contents with 

students in the hyperbolic geometry teaching. 
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1. INTRODUCTION 

The use of technology tools creates new situations and new dynamics in geometry’s 

teaching in the classroom, enhancing the ways of its understanding. Moreover, our research 

revealed considerable evidence that techniques from hyperbolic geometry motivated students 

and offered them fuller participation in the teaching process, especially to visualize the 

Poincaré’s disk and through it understand key elements of hyperbolic geometry. Models help 

students with their visualization while they are learning new mathematical concepts.  

Absolute geometry is a geometry based on an axiom system for Euclidean geometry 

without the parallel postulate or any of its alternatives. Hyperbolic geometry is built from 

absolute geometry, and hyperbolic postulate. 

Parallel Postulate:      A line and a point not on it fully define the point through that point. 
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Hyperbolic Postulate: Through a point not on a line, at least two lines can be drawn that 

do not intersect the given line. 
 

The following theorem and its corollary are a direct consequence of the hyperbolic 

postulate: 
 

Theorem 1.1  The sum of the measures of the angles of any hyperbolic triangle is less 

than a straight angle, or two right angles. 
 

Corollary 1.2 The sum of the measures of the angles of any convex hyperbolic 

quadrilateral is less than two straight angles, or four right angles. 
 

In the following the right angles are denoted ρ and straight angles are denoted σ.  Also, when 

stating a congruence, the order of the letters follows the order of the congruence. For instance, 

we write, “𝐽𝐸1𝐻 ≅ 𝑅𝐸𝐻 by AAS,” implies ∠𝐽 ≅ ∠𝑅 and ∠𝐸1 ≅ ∠𝐸 and𝐸1𝐻 ≅ 𝐸𝐻.    

In the Euclidean plane, there is one and only one regular n-gon with all right angles; 

namely, the square.  In hyperbolic geometry, there is no regular n-gon like this.   

How much less the sum of the measures of the angles of a triangle is than the sum of 

two right angles, σ, is called the triangle’s defect. A hyperbolic triangle (h-triangle) has a 

positive defect, while a Euclidean triangle has a defect of zero. 
 

Definition 1.3 For a triangle 𝐸𝐹𝐺, the following function is the defect of the triangle: 

 defect(𝐸𝐹𝐺) = 𝜎 − (∠𝐸 + ∠𝐹 + ∠𝐺)                       (1.1) 
 

Theorem 1.4 (Defect Addition Theorem) If a triangle is partitioned into smaller 

triangles, their defects must sum to the defect of the outer triangle. 
 

Corollary 1.5 (Defect Addition Corollary) If the defect of even one triangle is zero, then 

all triangles have zero defect. If the defect of even one triangle is positive, 

then all triangles have a non-zero positive defect. 
 

Theorem 1.6  There exists a constant 𝑘 such that area (𝐸𝐹𝐺) = 𝑘2defect (𝐸𝐹𝐺) with 

the defect measured in radians. 

   Proof is credited to Gauss and is beyond the scope of this paper. 
 

Thus, two h-triangles with the same angle sum have the same area. This implies that 

the area of a triangle can be considered either as a function of the angle sum of the triangle 

or as a function of the defect of the triangle. 

The congruence of triangles is an important and significant topic. Necessary and 

sufficient conditions for the congruence of triangles, widely known as congruence criteria, 

are used in almost all parts of geometry. Considering that analogous theorems for the 

congruence of quadrilaterals are rarely mentioned, and the fact that students will not have 

the opportunity to study them again, it is extremely important for students to understand 

these concepts. One way to do this is to use a comparative analysis of congruence criteria 

in hyperbolic plane and Euclidean geometry which is in the focus of this paper. But 

quadrilaterals are made of triangles so, in this introductory section, we will discuss triangles. 

The rest of the paper will be about quadrilaterals. 
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The congruence of both Euclidean and hyperbolic triangles is defined as follows: 
 

Definition 1.7  Triangles 𝐸𝐹𝐺 and 𝐸′𝐹′𝐺′ are congruent, 𝐸𝐹𝐺 ≅ 𝐸′𝐹′𝐺′ if and only if the 

following equalities hold:  

𝐸𝐹 = 𝐸′𝐹′  and  𝐹𝐺 = 𝐹′𝐺′  and  𝐺𝐸 = 𝐺′𝐸′  and   

∠𝐸 = ∠𝐸′  and  ∠𝐹 = ∠𝐹′  and  ∠𝐺 = ∠𝐺′                       (1.2) 
 

∠𝐸 means the interior angle at vertex𝐸; that is,∠𝐺𝐸𝐹 and analogously for the other angles. 

So, two triangles are congruent if the sides and angles of one triangle are congruent to 

the corresponding elements of the other. Therefore, it implies the above six equalities.  

However, as is well known, these six equalities are not independent. Some three of them 

imply the remaining three, and thus the congruence of the triangles. Statements of which 

three are called the congruence criteria of triangles. Since hyperbolic geometry is more 

abstract than Euclidean, to students properly understand the congruence criteria for h-

triangles, it is necessary to compare them with the well-known congruence criteria in 

Euclidean geometry, which we deal with below. There are six congruence criteria for h-

triangles, which we will now list and compare to the well-known five congruence criteria 

for Euclidean triangles. 
 

Theorem 1.8  (SAS) Two triangles are congruent if two sides and the included angle of 

one triangle are equal to two sides and the included angle of another 

triangle, respectively. 
 

Theorem 1.9  (SSS) Two triangles are congruent if three sides of one triangle are equal 

to three sides of another triangle, respectively. 
 

Theorem 1.10  (ASA) Two triangles are congruent if two angles and the included side of 

one triangle are equal to two angles and the included side of another 

triangle, respectively. 
 

Theorem 1.11  (AAS) Two triangles are congruent if two angles and a non-included side 

of one triangle are equal to two angles and a non-included side of another 

triangle, respectively. 

In Euclidean geometry, all triangles have the same angle sum. Thus, if two triangles 

have two corresponding angles equal, then their third angles must also be equal. Thus, ASA 

and AAS are equivalent in Euclidean geometry.  But, because h-triangles differ in their 

defect depending on their areas, ASA and AAS are not equivalent in hyperbolic geometry.  

Nevertheless, both can be proven independently using only absolute geometry postulates, 

as they are in Aguilar (2019). 
 

Theorem 1.12  (SsA) Two triangles are congruent if two sides and the angle opposite one 

of them in one triangle are equal to two sides and the angle opposite the 

same side in the other triangle, and these angles are both acute, both right, 

or both obtuse. 
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This congruence criterion is most often used in the following special form: 
 

Theorem 1.13  Two triangles are congruent if two sides and the angle opposite the larger 

of the two sides in one triangle are equal to two sides and the corresponding 

angle of the other triangle. 
 

Thus, for students of Euclidean geometry, the only new information here is that AAS 

is not just an easy corollary of ASA requiring only the angle sum theorem to fill in the third 

angle, but, in absolute geometry, they are independent theorems with their own proofs.  

Also, many students have only learned of HL congruence and are not aware that it is a 

special case of SsA congruence. 
 

Theorem 1.14  (AAA) Two h-triangles are congruent if three angles of one triangle are 

equal to three angles of another triangle. 

Proof can be found in Stanković, Zlatanović (2016). 

2. CAN FOUR EQUALITIES PROVE QUADRILATERAL CONGRUENCE? 

The definition of the congruence of two quadrilaterals is analogous with that for the 

congruence of two triangles. 
 

Definition 2.1  Quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′ are congruent,𝐸𝐹𝐺𝐻 ≅ 𝐸′𝐹′𝐺′𝐻′ if 
and only if the following equalities hold: 

𝐸𝐹 = 𝐸′𝐹′  and  𝐹𝐺 = 𝐹′𝐺′  and  𝐺𝐻 = 𝐺′𝐻′  and  𝐻𝐸 = 𝐻′𝐸′  and 

∠𝐸 = ∠𝐸′  and  ∠𝐹 = ∠𝐹′  and  ∠𝐺 = ∠𝐺′  and  ∠𝐻 = ∠𝐻′          (2.1) 
 

These eight equalities (2.1) are not independent. Some number of them imply the 

remaining ones, and thus the congruence of quadrilaterals. It is not yet clear what that 

number is. Analogy with triangles superficially suggests that the number is four. However, 

this is not true if any one of the equalities is of lengths. It is also not true for AAAA in 

Euclidean geometry – the square and the rectangle being an obvious counterexample. 

Taking this into account, students can try by using the appropriate theorems from Euclidean 

geometry to show whether four equalities can prove the congruence of quadrilaterals, 

which will be discussed below. 
 

Theorem 2.2  No four of the eight equalities (2.1) are sufficient to prove congruence of 

two h-quadrilaterals 𝐸𝐹𝐺𝐻 and𝐸′𝐹′𝐺′𝐻′. 

Proof  It can be shown that, for any four of the eight equalities (2.1), there are two 

non-congruent quadrilaterals that meet these four equalities. Such 

quadrilaterals are counterexamples to the claim that these four equalities 

are sufficient to prove congruence. We will consider all possible 

combinations.  In the following diagrams, sides labeled with English letters 

and angles labeled with Greek letters are the ones given to be equal. 

1. Four sides.  Such quadrilaterals need not be congruent. For example, a square 

and a rhombus with equal sides are not congruent in either Euclidean or 

hyperbolic geometry. 
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2. Three sides and one angle.  There are two possible positions for the angle. 

                    

 

 

Fig. 2.1  

a. SASS.  In figure 2.1(a), SASS implies 𝐸𝐹𝐺𝐻 ≅ 𝐸𝐹𝐺′𝐻, which is 

clearly not the case. Analogously, SSAS does not work. 

b. SSSA.  In figure 2.1(b), SASS implies 𝐸𝐹𝐺𝐻 ≅ 𝐸𝐹𝐺𝐻′, which is clearly 

not the case. Analogously, ASSS does not work. 

3. Two adjacent sides and two angles.  There are three possible positions for 

the two angles. 

Fig. 2.2 

a. SASA.  In figure 2.2(a), SASA implies 𝐸𝐹𝐺𝐻 ≅ 𝐸𝐹𝐺′𝐻, which is 

clearly not the case. Analogously, ASAS does not work. 

b. SAS-A.  In figure 2.2(b), SAS-A implies 𝐸𝐹𝐺𝐻 ≅ 𝐸𝐹𝐺′𝐻, which is 

clearly not the case. Analogously, A-SAS does not work. 

c. SSAA.  In figure 2.2(c), SSAA implies 𝐸𝐹𝐺𝐻 ≅ 𝐸𝐹𝐺𝐻′, which is 

clearly not the case. Analogously, AASS does not work. 
 

4. Two non-adjacent sides and two angles. There are three possible positions 

for the two angles. 
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Fig. 2.3 

a. S-ASA.  In figure 2.3(a), S-ASA implies 𝐸𝐹𝐺𝐻 ≅ 𝐸𝐹𝐺′𝐻, which is 

clearly not the case. Analogously, ASA-S does not work. 

b. S-AS-A.  In figure 2.3(b), S-AS-A implies 𝐸𝐹𝐺𝐻 ≅ 𝐸𝐹𝐺′𝐻′, which is 

clearly not the case. Analogously, A-SA-S does not work. 

c. SAAS.  In figure 2.3(c), SAAS implies 𝐸𝐹𝐺𝐻 ≅ 𝐸𝐹𝐺′𝐻′, which is 

clearly not the case. 

5. One side and three angles.  There are two possible positions for the side. 

  

Fig. 2.4 

a. ASAA.  In figure 2.4(a), ASAA implies 𝐸𝐹𝐺𝐻 ≅ 𝐸𝐹𝐺′𝐻′, which is 

clearly not the case. Analogously, AASA does not work. 

b. AAAS.  In figure 2.4(b), AAAS implies 𝐸𝐹𝐺𝐻 ≅ 𝐸𝐹𝐺′𝐻′, which is 

clearly not the case. Analogously, SAAA does not work.  

6. Four angles. There is one characteristic case and two constructible 

counterexamples, though not in a finite number of steps. Constructing 

these counterexamples will be deferred to section four.                                      ∎ 
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3. CAN FIVE EQUALITIES PROVE QUADRILATERAL CONGRUENCE? 

Now, let us consider congruence of two h-quadrilaterals with five equal elements. It turns 

out that some five of the eight equalities (2.1) prove congruence of two h-quadrilaterals. We 

will systematize the cases and consider them each as we did for the previous theorem. In the 

following diagrams, letters with no subscripts are the ones given to be equal while subscripted 

letters are proven equal in intermediate steps. Students can try by using the appropriate 

congruence theorems in Euclidean geometry to show whether four equalities can prove the 

congruence of quadrilaterals. 
 

1. Four sides and one angle.  There is only one characteristic case: 
 

Theorem 3.1  The quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′ are congruent if 

𝐸𝐹 = 𝐸′𝐹′ = 𝑒  and  𝐹𝐺 = 𝐹′𝐺′ = 𝑓  and  𝐺𝐻 = 𝐺′𝐻′ = 𝑔  and   

𝐻𝐸 = 𝐻′𝐸′ = ℎ  and  ∠𝐸 = ∠𝐸′ = 𝛼                        (3.1) 
 

Proof By SAS, 𝐻𝐸𝐹 ≅ 𝐻′𝐸′𝐹′ (See Figure 3.1), which holds these equalities: 

 𝐹𝐻 = 𝐹′𝐻′  and  ∠𝐸𝐹𝐻 = ∠𝐸′𝐹′𝐻′ = 𝛽1  and  ∠𝐸𝐻𝐹 = ∠𝐸′𝐻′𝐹′ = 𝛿1   

 

Fig. 3.1 

From (3.1) and 𝐹𝐻 = 𝐹′𝐻′, by SSS, we obtain 𝐹𝐺𝐻 ≅ 𝐹′𝐺′𝐻′. Thus, 

∠𝐻𝐹𝐺 = ∠𝐻′𝐹′𝐺′ = 𝛽2  and  ∠𝐹𝐻𝐺 = ∠𝐹′𝐻′𝐺′ = 𝛿2 

 ∠𝐹𝐺𝐻 = ∠𝐹′𝐺′𝐻′                                                   (3.2) 

Now we have, 

∠𝐸𝐹𝐺 = ∠𝐸′𝐹′𝐺′ = 𝛽1 + 𝛽2                      (3.3) 

∠𝐸𝐻𝐺 = ∠𝐸′𝐻′𝐺′ = 𝛿1 + 𝛿2                      (3.4) 

The eight equalities (2.1) needed for congruence are satisfied with the 

given equalities and (3.2), (3.3) and (3.4). Thus, 𝐸𝐹𝐺𝐻 ≅ 𝐸′𝐹′𝐺′𝐻′.     ∎ 
 

This quadrilateral congruence criterion we will call SASSS. Students can observe that 

only SAS and SSS was cited, which are absolute geometry theorems, so this criterion is 

also Euclidean. 
 

2. Three sides and two angles.  There are three characteristic cases. Two of them 

guarantee a congruence of quadrangles and one not. Let us consider the first two. 
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Theorem 3.2 The quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′ are congruent if 

 𝐸𝐹 = 𝐸′𝐹′ = 𝑒  and  𝐹𝐺 = 𝐹′𝐺′ = 𝑓  and  𝐻𝐸 = 𝐻′𝐸′ = ℎ  and   

 ∠𝐸 = ∠𝐸′ = 𝛼  and  ∠𝐹 = ∠𝐹′ = 𝛽  
 

Proof By SAS, 𝐻𝐸𝐹 ≅ 𝐻′𝐸′𝐹′ (See Figure 3.2), which holds these equalities: 

 𝐹𝐻 = 𝐹′𝐻′  and  ∠𝐸𝐹𝐻 = ∠𝐸′𝐹′𝐻′ = 𝛽1  and  ∠𝐸𝐻𝐹 = ∠𝐸′𝐻′𝐹′ = 𝛿1     

 

Fig. 3.2 

∠𝐻𝐹𝐺 = ∠𝐻′𝐹′𝐺′ = 𝛽2 = 𝛽 − 𝛽1, so, by SAS, 𝐻𝐹𝐺 ≅ 𝐻′𝐹′𝐺′, which 

holds the equalities ∠𝐹𝐺𝐻 = ∠𝐹′𝐺′𝐻′ and ∠𝐺𝐻𝐹 = ∠𝐺′𝐻′𝐹′ = 𝛿2. 

∠𝐺𝐻𝐸 = ∠𝐺′𝐻′𝐸′ = 𝛿1 + 𝛿2. Thus, the eight equalities (2.1) needed for 

congruence are satisfied and 𝐸𝐹𝐺𝐻 ≅ 𝐸′𝐹′𝐺′𝐻′.                 ∎ 
 

This quadrilateral congruence criterion we will call SASAS. Students can observe that 

only SAS and SSS was cited, which are absolute geometry theorems, so this criterion is 

also Euclidean. 
 

Theorem 3.3 The quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′ are congruent if 

 𝐸𝐹 = 𝐸′𝐹′ = 𝑒  and  𝐹𝐺 = 𝐹′𝐺′ = 𝑓  and  𝐻𝐸 = 𝐻′𝐸′ = ℎ  and   

 ∠𝐸 = ∠𝐸′ = 𝛼  and  ∠𝐻 = ∠𝐻′ = 𝛿 and  

 ∠𝐺 and ∠𝐺′ are both acute, both right, or both obtuse. 
 

Proof By SAS, 𝐻𝐸𝐹 ≅ 𝐻′𝐸′𝐹′ (See Figure 3.3), which holds these equalities: 

 𝐹𝐻 = 𝐹′𝐻′  and  ∠𝐸𝐹𝐻 = ∠𝐸′𝐹′𝐻′ = 𝛽1  and  ∠𝐸𝐻𝐹 = ∠𝐸′𝐻′𝐹′ = 𝛿1 

 

Fig. 3.3 
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∠𝐹𝐻𝐺 = ∠𝐹′𝐻′𝐺′ = 𝛾2 = 𝛾 − 𝛾1.  Since ∠𝐺 and ∠𝐺′ are both acute, both 

right, or both obtuse, by SsA, 𝐺𝐹𝐻 ≅ 𝐺′𝐹′𝐻′, which holds the equalities 

∠𝐻𝐺𝐹 = ∠𝐻′𝐺′𝐹′ and ∠𝐺𝐹𝐻 = ∠𝐺′𝐹′𝐻′ = 𝛽2. 

∠𝐸𝐹𝐺 = ∠𝐸′𝐹′𝐺′ = 𝛽1 + 𝛽2. Thus, the eight equalities (2.1) needed for 

congruence are satisfied and 𝐸𝐹𝐺𝐻 ≅ 𝐸′𝐹′𝐺′𝐻′.                ∎ 
 

This quadrilateral congruence criterion we will call ASASs. Students can observe that 

only SAS and SsA was cited, which are absolute geometry theorems, so this criterion is 

also Euclidean. 
 

Theorem 3.4 The quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′ are not necessarily congruent if 

 𝐸𝐹 = 𝐸′𝐹′ = 𝑒  and  𝐹𝐺 = 𝐹′𝐺′ = 𝑓  and  𝐻𝐸 = 𝐻′𝐸′ = ℎ  and   

 ∠𝐸 = ∠𝐸′ = 𝛼  and  ∠𝐺 = ∠𝐺′ = 𝛾  
 

Proof Quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′ (figure 3.4) are a counterexample.  ∎ 

 

Fig. 3.4 

3. Two sides and three angles.  Sides can be adjacent or opposite. Let us first consider 

the case of adjacent sides. There are three different cases and all of them guarantee 

a congruence of h-quadrangles, though only the first two are absolute geometry. 
 

Theorem 3.5 The quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′ are congruent if 

𝐸𝐹 = 𝐸′𝐹′ = 𝑒  and  𝐻𝐸 = 𝐻′𝐸′ = ℎ  and   

 ∠𝐸 = ∠𝐸′ = 𝛼  and  ∠𝐹 = ∠𝐹′ = 𝛽  and  ∠𝐻 = ∠𝐻′ = 𝛿  

  

Proof By SAS, 𝐻𝐸𝐹 ≅ 𝐻′𝐸′𝐹′ (See Figure 3.5), which holds these equalities: 

 𝐹𝐻 = 𝐹′𝐻′  and  ∠𝐸𝐹𝐻 = ∠𝐸′𝐹′𝐻′ = 𝛽1  and  ∠𝐸𝐻𝐹 = ∠𝐸′𝐻′𝐹′ = 𝛿1   
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Fig. 3.5 

∠𝐻𝐹𝐺 = ∠𝐻′𝐹′𝐺′ = 𝛽 − 𝛽1 = 𝛽2, so, by AAS, 𝐺𝐹𝐻 ≅ 𝐺′𝐹′𝐻′, which 

holds the equalities 𝐹𝐺 = 𝐹′𝐺′, 𝐺𝐻 = 𝐺′𝐻′  and  ∠𝐺𝐻𝐹 = ∠𝐺′𝐻′𝐹′ = 𝛿2. 

∠𝐺𝐻𝐸 = ∠𝐺′𝐻′𝐸′ = 𝛿1 + 𝛿2. Thus, the eight equalities (2.1) needed for 

congruence are satisfied and 𝐸𝐹𝐺𝐻 ≅ 𝐸′𝐹′𝐺′𝐻′.             ∎ 
 

This quadrilateral congruence criterion we will call SASAA. Students can observe that 

only SAS and AAS was cited, which are absolute geometry theorems, so this criterion is 

also Euclidean. 
 

Theorem 3.6 The quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′ are congruent if 

 𝐸𝐹 = 𝐸′𝐹′ = 𝑒  and  𝐹𝐺 = 𝐹′𝐺′ = 𝑓  and   

 ∠𝐸 = ∠𝐸′ = 𝛼  and  ∠𝐹 = ∠𝐹′ = 𝛽  and  ∠𝐻 = ∠𝐻′ = 𝛿  
   

Proof By SAS, 𝐸𝐹𝐺 ≅ 𝐸′𝐹′𝐺′ (See Figure 3.6), which holds these equalities: 

 𝐸𝐺 = 𝐸′𝐺′  and  ∠𝐺𝐸𝐹 = ∠𝐺′𝐸′𝐹′ = 𝛼1  and  ∠𝐹𝐺𝐸 = ∠𝐹′𝐺′𝐸′ = 𝛾1 

 

Fig. 3.6 

∠𝐻𝐸𝐺 = ∠𝐻′𝐸′𝐺′ = 𝛼 − 𝛼1 = 𝛼2 and ∠𝐻𝐺𝐸 = ∠𝐻′𝐺′𝐸′ = 𝛾 − 𝛾1 =

𝛾2 so, by ASA, 𝐸𝐺𝐻 ≅ 𝐸′𝐺′𝐻′, which holds the equalities 𝐺𝐻 = 𝐺′𝐻′ and  

𝐻𝐸 = 𝐻′𝐸′  and  ∠𝐺𝐻𝐸 = ∠𝐺′𝐻′𝐸′. 
Thus, the eight equalities (2.1) needed for congruence are satisfied 

and𝐸𝐹𝐺𝐻 ≅ 𝐸′𝐹′𝐺′𝐻′.                ∎ 
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This quadrilateral congruence criterion we will call ASASA. Students can observe that 

only SAS and ASA was cited, which are absolute geometry theorems, so this criterion is 

also Euclidean. 
 

Theorem 3.7 The h-quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′ are congruent if 

 𝐺𝐻 = 𝐺′𝐻′ = 𝑔  and  𝐺𝐸 = 𝐺′𝐸′ = ℎ  and   

 ∠𝐸 = ∠𝐸′ = 𝛼  and  ∠𝐹 = ∠𝐹′ = 𝛽  and  ∠𝐻 = ∠𝐻′ = 𝛿   

    

Proof 𝐹𝐺 and 𝐹′𝐺′ are either equal or not equal. Suppose𝐹𝐺 = 𝐹′𝐺′ = 𝑓, then 

𝐻𝐺𝐹𝐸 ≅ 𝐻′𝐺′𝐹′𝐸′ by theorem 3.5, SASAA. See figure 3.7. 

 

Fig. 3.7 

Suppose 𝐹𝐺 ≠ 𝐹′𝐺′.  𝐹′𝐺′ < 𝐹𝐺 or switch labels on 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′. 

There exists a point 𝐹1 between 𝐹 and 𝐺 such that 𝐹1𝐺 = 𝐹′𝐺′ = 𝑓1. Draw 

a ray 𝐹1𝑄⃗⃗⃗⃗⃗⃗  ⃗ such that 𝑄 is on 𝐸𝐻 and ∠𝐺𝐹1𝑄 = 𝛽. See figure 3.8. 

 

Fig. 3.8 

Let the point 𝐸1 be on ray 𝐹1𝑄⃗⃗⃗⃗⃗⃗  ⃗ and such that𝐸1𝐹1 = 𝐸′𝐹′. By Theorem 3.2 

(SASAS), 𝐻𝐺𝐹1𝐸1 ≅ 𝐻′𝐺′𝐹′𝐸′, which holds the equality ∠𝐻𝐸1𝐹1 = 𝛼. 

There are three possible positions for 𝐸1 relative to 𝐹1 and 𝑄 on this ray. 

We will label them cases (a), (b) and (c).  See figure 3.9. 
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Fig. 3.9 

Case (a).  𝐸1 is between 𝐹1 and 𝑄. By the exterior angle inequality theorem 

applied to 𝐸𝑃𝐻, 𝛼 < ∠𝐻𝑃𝐹. But the interior angles of 𝑃𝐸1𝐹1𝐹 are ∠𝐻𝑃𝐹,
𝜎 − 𝛼, 𝜎 − 𝛽 and 𝛽. The sum of these angles is 2𝜎 + ∠𝐻𝑃𝐹 − 𝛼. By 

theorem 1.1, this must be less than 2𝜎, which implies ∠𝐻𝑃𝐹 < 𝛼. This is 

a contradiction, so case (a) is not true. 

Case (b).  𝐸1 coincides with 𝑄. The sum of the interior angles of 𝑃𝐸1𝐹1𝐹 

is 2𝜎, which contradicts theorem 1.1, so case (b) is not true. 

Case (c).  𝑄 is between 𝐸1 and 𝐹1.   

Suppose 𝛼 = 𝜌.  ℎ = 𝐻𝐸1 < 𝐻𝑄 < 𝐻𝐸 = ℎ, a contradiction.   

Suppose 𝛼 ≠ 𝜌. Locate 𝐽 and 𝐾, the feet or perpendiculars dropped from 

𝐻 onto 𝐸1𝐹1 and 𝐸𝐹, respectively. See figure 3.10. 

 

Fig. 3.10 

𝐽𝐸1𝐻 ≅ 𝐾𝐸𝐻 by AAS, which holds the equality 𝐽𝐻 ≅ 𝐾𝐻.  There is a 

point 𝐿 on 𝐾𝐻 and 𝐸1𝐹1.  Thus, ℎ = 𝐸1𝐻 < 𝐻𝐽 < 𝐻𝐿 < 𝐻𝐾 < 𝐻𝐸 = ℎ. 

This is a contradiction, so case (c) is no more true than cases (a) and (b).  

𝐹𝐺 ≠ 𝐹′𝐺′ meets only with contradiction, so 𝐸𝐹𝐺𝐻 ≅ 𝐸′𝐹′𝐺′𝐻′.          ∎ 
 

This quadrilateral congruence criterion we will call SSAAA. Student can observe that 

we cited the angle sum of triangles being less than a straight angle and the angle sum of 

quadrilaterals being less than two straight angles, which are hyperbolic geometry theorems, 

so this criterion is not true in Euclidean geometry. 

Now we will consider two opposite sides and three angles. There is only one characteristic 

case, and it does not guarantee congruence. 
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Theorem 3.8 The quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′ are not necessarily congruent if 

 𝐸𝐹 = 𝐸′𝐹′ = 𝑒  and  𝐺𝐻 = 𝐺′𝐻′ = 𝑔  and   

 ∠𝐸 = ∠𝐸′ = 𝛼  and  ∠𝐹 = ∠𝐹′ = 𝛽  and  ∠𝐻 = ∠𝐻′ = 𝛿  

     

Proof Quadrilaterals EFGH and E′F′G′H′ (figure 3.11) are a counterexample. ∎ 

 

Fig. 3.11 

4. One side and four angles.  There is only one characteristic case. 
 

Theorem 3.9 The h-quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′ are congruent if 

 𝐸𝐹 = 𝐸′𝐹′ = 𝑒  and  ∠𝐸 = ∠𝐸′ = 𝛼  and  ∠𝐹 = ∠𝐹′ = 𝛽   

 ∠𝐺 = ∠𝐺′ = 𝛾  and  ∠𝐻 = ∠𝐻′ = 𝛿  

    

Proof 𝐸𝐻 and 𝐸′𝐻′ are either equal or not equal. Suppose 𝐸𝐻 = 𝐸′𝐻′ = ℎ, then 

𝐻𝐸𝐹𝐺 ≅ 𝐻′𝐸′𝐹′𝐺′ by theorem 3.5, SASAA. See figure 3.12. 

 

Fig. 3.12 

Suppose 𝐸𝐻 ≠ 𝐸′𝐻′.  𝐸′𝐻′ < 𝐸𝐻 or switch labels on 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′. 

There exists a point 𝐻1 between 𝐸 and 𝐻 such that 𝐸𝐻1 = 𝐸′𝐻′ = ℎ1. Draw 

a ray 𝐻1𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗ such that 𝑃 is on 𝐹𝐺 and ∠𝐸𝐻1𝑃 = 𝛿. See figure 3.13. 
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Fig. 3.13 

Let the point 𝐺1 be on ray 𝐻1𝑃⃗⃗ ⃗⃗ ⃗⃗  ⃗ and such that 𝐻1𝐺1 = 𝐻′𝐺′ = ℎ′. By 

Theorem 3.2 (SASAS), 𝐹𝐸𝐻1𝐺1 ≅ 𝐹′𝐸′𝐻′𝐺′. There are three possible 

positions for 𝐺1 relative to 𝐻1 and 𝑃 on this ray. We will label them cases 

(a), (b) and (c).  See figure 3.14. 

 

   

Fig. 3.14 

Case (a).  𝐺1 is between 𝐻1 and 𝑃.  ∠𝐸𝐹𝐺1 < ∠𝐸𝐹𝑃 = 𝛽. But ∠𝐸𝐹𝐺1 =

𝛽 because 𝐹𝐸𝐻1𝐺1 ≅ 𝐹′𝐸′𝐻′𝐺′. Thus, case (a) is not true. 

Case (b).  𝐺1 coincides with 𝑃.  𝐹𝐸𝐻1𝐺1 ≅ 𝐹′𝐸′𝐻′𝐺′, which holds the 

equality ∠𝐹𝐺1𝐻1 = 𝛾. But 𝐸𝐹𝐺𝐻 is larger than 𝐸𝐹𝐺1𝐻1 so it must have a 

greater defect, not all the same angles. Thus, case (b) is not true. 

Case (c).  𝑃 is between 𝐻1 and 𝐺1.  ∠𝐸𝐹𝐺1 > ∠𝐸𝐹𝑃 = 𝛽.  But ∠𝐸𝐹𝐺1 =

𝛽 because 𝐹𝐸𝐻1𝐺1 ≅ 𝐹′𝐸′𝐻′𝐺′. Thus, case (c) is not true. 

Thus, 𝐸𝐻 ≠ 𝐸′𝐻′ meets only with contradiction, so 𝐸𝐹𝐺𝐻 ≅ 𝐸′𝐹′𝐺′𝐻′.  ∎ 
 

This quadrilateral congruence criterion we will call SAAAA. Students can observe that 

case (b) could be true in Euclidean geometry, where a quadrilateral can have a similar one 

inside it. So this criterion only works for h-quadrilaterals. 
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4. CONGRUENCE OF SACCHERI AND LAMBERT QUADRILATERALS 

In this section we will deal with special classes of quadrilaterals in hyperbolic geometry 

such as Saccheri and Lambert quadrilaterals. Saccheri considered a type of quadrilateral, 

called a Saccheri quadrilateral, as in attempting to prove the parallel postulate. In Euclidean 

geometry, a Saccheri quadrilateral is a rectangle. Students should observe the common 

properties of the Saccheri quadrilateral and a rectangle. 
 

Definition 4.1 A Saccheri quadrilateral is a quadrilateral with two equal sides perpendicular 

to the base. The top side is the summit or upper base and the angles on the 

summit are the summit angles.  
 

For a Saccheri quadrilateral 𝐸𝐹𝐺𝐻, the base is 𝐸𝐹 and the summit is 𝐺𝐻. The summit 

angles of a Saccheri quadrilateral are equal, and they are less than a right angle. If they 

were right, then 𝐸𝐹𝐺𝐻 would be a rectangle and we would be doing Euclidean geometry. 
 

Definition 4.2 A Lambert quadrilateral is a quadrilateral with three right-angles. 
  

In Euclidean geometry, three right angles imply that the fourth is also right and it is a 

rectangle. 
 

Theorem 4.3 Two Lambert quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′, with acute angles at 𝐻 

and 𝐻′ are congruent if and only if one of the following sets of conditions 

is true: 

 a)  𝐸𝐹 = 𝐸′𝐹′   and  𝐹𝐺 = 𝐹′𝐺′        b)  𝐸𝐹 = 𝐸′𝐹′  and  𝐸𝐻 = 𝐸′𝐻′ 

 c)  𝐸𝐻 = 𝐸′𝐻′  and  𝐺𝐻 = 𝐺′𝐻′       d)  𝐸𝐻 = 𝐸′𝐻′  and  ∠𝐻 = ∠𝐻′ 

                e)  𝐸𝐹 = 𝐸′𝐹′  and  ∠𝐻 = ∠𝐻′         f)  𝐸𝐻 = 𝐸′𝐻′  and  𝐹𝐺 = 𝐹′𝐺′  (4.1) 
    

Proof Cases (a), (b), (c), (d) and (e) follow immediately from theorems 3.6 

(ASASA), 3.5 (SASAA), 3.8 (SSAAA), 3.10 (SAAAA) and 3.10, 

respectively. 

Since every Saccheri quadrilateral can be divided into two congruent Lambert 

quadrilaterals, students can observe that it immediately follows that:  
 

Corollary 4.4 Two Saccheri quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′, with bases 𝐸𝐹 and 𝐸′𝐹′  

and with summits 𝐺𝐻 and 𝐺′𝐻′, respectively, are congruent if and only if 

one of the following sets of conditions is true: 

 a)  𝐸𝐹 = 𝐸′𝐹′  and  𝐹𝐺 = 𝐹′𝐺′          b)  𝐸𝐹 = 𝐸′𝐹′  and  𝐺𝐻 = 𝐺′𝐻′ 

 c)  𝐹𝐺 = 𝐹′𝐺′  and  𝐺𝐻 = 𝐺′𝐻′         d)  𝐸𝐹 = 𝐸′𝐹′  and  ∠𝐺 = ∠𝐺′ 

 e)  𝐹𝐺 = 𝐹′𝐺′  and  ∠𝐺 = ∠𝐺′           f) 𝐺𝐻 = 𝐺′𝐻′  and  ∠𝐺 = ∠𝐺′ (4.2) 
 

Theorem 4.5 The quadrilaterals 𝐸𝐹𝐺𝐻 and 𝐸′𝐹′𝐺′𝐻′ are not necessarily congruent if  

 ∠𝐸 = ∠𝐸′ = 𝛼  and  ∠𝐹 = ∠𝐹′ = 𝛽  and   

∠𝐺 = ∠𝐺′ = 𝛾  and  ∠𝐻 = ∠𝐻′ = 𝛿 
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Fig. 4.1 

Proof 𝐸𝐹𝐺𝐻 is a Lambert quadrilateral with ∠𝐸 = ∠𝐹 = ∠𝐺 = 𝜌 and  ∠𝐻 < 𝜌.  

Find 𝐺′ in 𝐹𝐺⃗⃗⃗⃗  ⃗ such that 𝐹 − 𝐺 − 𝐺′ and ∠𝐺′ = 𝜌. Let 𝐸′ be the foot of the 

perpendicular dropped onto 𝐸𝐹⃡⃗⃗⃗  ⃗ from 𝐾. By construction, 𝐸′𝐹𝐺′𝐾 is a 

Lambert quadrilateral with ∠𝐾 < 𝜌. 

 If 𝐾 moves infinitely from point 𝐺 on 𝐺𝐾′⃗⃗⃗⃗ ⃗⃗  ⃗, then ∠𝐾 will be smaller and 

smaller and in some point ∠𝐾 = ∠𝐻 = 𝛿. 

 So, there exists a point 𝐾 on 𝐺𝐾′⃗⃗⃗⃗ ⃗⃗  ⃗ such that ∠𝐾 = ∠𝐻. Thus, 𝐸𝐹𝐺𝐻 and 

𝐸′𝐹𝐺𝐾 have all equal angles but they are not congruent.            ∎ 

5. CONCLUSION 

This paper aims to develop some new congruence criteria of convex h-quadrilaterals 

and relate them to previous work on hyperbolic geometry and its applications. Accordingly, 

we presented the appropriate methodological approach in teaching using comparative 

geometric analysis of quadrilateral congruence criteria in Euclidean and hyperbolic 

geometry. 

We start with six congruence criteria for triangles (SAS, SSS, ASA, AAS, SsA and 

AAA), the first five of which are absolute geometry and the last of which applies only to 

h-triangles. We then prove that no four equalities can prove quadrilateral convergence. We 

then prove that there are seven congruence criteria for convex quadrilaterals (SASSS, 

SASAS, ASASs, SASAA, ASASA, SSAAA, SAAAA), the first five of which are absolute 

geometry and the last two of which apply only to h-quadrilaterals. Finally, we list the six 

congruence criteria for Lambert quadrilaterals and the six congruence criteria for Saccheri 

quadrilaterals and prove the one that is not a direct consequence of the seven congruence 

criteria for general h-quadrilaterals. 

As a final remark it should be stated that the results derived in this paper could probably 

be applied to the Einstein relativistic velocity model of hyperbolic geometry (Barbu, 2010). 
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METODIČKI PRISTUP KONGRUENCIJI ČETVOROUGLOVA  

U HIPERBOLIČKOJ GEOMETRIJI 

U ovom radu dokazaćemo nove kriterijume kongruencija konveksnih četvorouglova u 

hiperboličkoj geometriji i, u skladu sa tim, prikazati metodički pristup u izučavanju istog. Postoji 

sedam kriterijuma za kongruenciju hiperboličkih četvorouglova, dok ih je pet koji važe za 

četvorouglove u euklidskoj geometriji. Koristeći komparativnu geometrijsku analizu kriterijuma 

kongruencije koji važe u Euklidskoj i Hiperboličkoj geometriji, opisali smo sve moguće slučajeve i, 

u skladu sa tim, odgovarajući metodički pristup za svaki od njih. Dobijeni rezultati mogu uticati na 

pristupe izučavanja ovih sadržaja sa studentima u nastavi Hiperboličke geometrije.  

Ključne reči: kongruencija konveksnih četvorouglova, Euklidska geometrija, Hiperbolička 

geometrija, hiperbolički četvorouglovi, metodički pristup   


