SUCCESS OF AI MATH SOLVER TOOL IN SOLVING NON-STANDARD MATHEMATICS COMPETITION PROBLEMS
Abstract
Keywords
Full Text:
PDFReferences
Ahn, J., Verma, R., Lou, R., Liu, D., Zhang, R., & Yin, W. (2024). Large Language Models for Mathematical Reasoning: Progresses and Challenges. Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop, 225–237. Association for Computational Linguistics.https://aclanthology.org/2024.eacl-srw.17/
Akveld, M., Caceres-Duque, L. F., Nieto Said, J. H., & Sánchez Lamoneda, R. (2020). The Math Kangaroo Competition. Espacio Matemático1(2), 74-91. https://doi.org/10.3929/ETHZ-B-000456237
Castelvecchi, D. (2024). DeepМind hits milestone in solving maths problems — AI’s Next Grand Challenge. Nature, 632(8024), 236–237. https://doi.org/10.1038/d41586-024-02441-2
Cherian, A., Peng, K., Lohit, S., Smith, K.A., & Tenenbaum, J.B. (2023). Are Deep Neural Networks SMARTer Than Second Graders? 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10834-10844.https://doi.org/10.1109/cvpr52729.2023.01043
Cherian, A., Peng, K.-C., Lohit, S., Matthiesen, J., Smith, K., & Tenenbaum, J.B. (2025). Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads. NIPS '24: Proceedings of the 38th International Conference on Neural Information Processing Systems, 15779-15800 https://dl.acm.org/doi/10.5555/3737916.3738420
DeepMind. (2024). AI achieves silver-medal standard solving International Mathematical Olympiad problems. DeepMind Blog. Retrieved December 2, 2024, from https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
Elbanna, S., & Armstrong, L. (2023). Exploring the integration of ChatGPT in education: adapting for the future. In Management & Sustainability: An Arab Review3(1), 16–29.https://doi.org/10.1108/msar-03-2023-0016
Frieder, S., Pinchetti, L., Chevalier, A., Griffiths, R.R., Salvatori, T., Lukasiewicz, T., Petersen, P., & Berner, J. (2024). Mathematical Capabilities of ChatGPT. Proceedings of the 37th International Conference on Neural Information Processing Systems, 27699–27744. Curran Associates, Inc.https://proceedings.neurips.cc/paper_files/paper/2023/file/58168e8a92994655d6da3939e7cc0918-Paper-Datasets_and_Benchmarks.pdf
Koncel-Kedziorski, R., Roy, S., Amini, A., Kushman, N., & Hajishirzi, H. (2016). MAWPS: A Math Word Problem Repository. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1152–1157. Association for Computational Linguistics. https://doi.org/10.18653/v1/n16-1136
Lo, C. K. (2023). What Is the Impact of ChatGPT on Education? A Rapid Review of the Literature. Education Sciences13(4), 410. MDPI. https://doi.org/10.3390/educsci13040410
Lu, P., Bansal, H., Xia, T., Liu, J., Li, C., Hajishirzi, H., Cheng, H., Chang, K.-W., Galley, M., & Gao, J. (2024). MathVista: Evaluating Mathematical Reasoning of Foundation Models in Visual Contexts. Proceedings of ICLR.https://openreview.net/attachment?id=KUNzEQMWU7&name=pdf
Marchisio, K., Ko, W., Bérard, A., Dehaze, T., & Ruder, S. (2024). Understanding and mitigating language confusion in LLMs. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 6653–6677.Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.emnlp-main.380
Memarian, B., & Doleck, T. (2023). ChatGPT in education: Methods, potentials, and limitations. Computers in Human Behavior: Artificial Humans 1(2), 100022. Elsevier BV. https://doi.org/10.1016/j.chbah.2023.100022
Simjanović, D., Randjelović, B., Vesić, N., & Penjišević, A. (2022). Examples of mathematical problems in primary and secondary education that include the actual calendar year. Facta Universitatis, Series: Teaching, Learning and Teacher Education, 5(2), 191–200. https://doi.org/10.22190/futlte210617015s
Spasić, A. J., & Janković, D. S. (2023). Using ChatGPT Standard Prompt Engineering Techniques in Lesson Preparation: Role, Instructions and Seed-Word Prompts. 2023 58th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), 47–50. https://doi.org/10.1109/icest58410.2023.10187269
Stanković, M., Milenković, A., Svičević, M., & Vučićević, N. (2025). Performance of an AI Tool in Solving Non-Standard Mathematics Competition Problems. 1st International Scientific Conference Education and Artificial Intelligence (EDAI 2024), 165–174. https://doi.org/10.46793/EDAI24.165S
Sundaram, S. S., Gurajada, S., Padmanabhan, D., Abraham, S. S., & Fisichella, M. (2024). Does a language model “understand” high school math? A survey of deep learning based word problem solvers. Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery 14(4). https://doi.org/10.1002/widm.1534
Trinh, T. H., Wu, Y., Le, Q. V., He, H., & Luong, T. (2024). Solving olympiad geometry without human demonstrations. In Nature, 625(7995), 476–482. https://doi.org/10.1038/s41586-023-06747-5
Wei, X. (2024). Evaluating chatGPT-4 and chatGPT-4o: performance insights from NAEP mathematics problem solving. Frontiers in Education, 9,Article1452570. https://doi.org/10.3389/feduc.2024.1452570
Yiu, E., Qraitem, M., Wong, C., Majhi, A. N., Bai, Y., Ginosar, S., Gopnik, A., & Saenko, K. (2024). KiVA: Kid-inspired Visual Analogies for Testing Large Multimodal Models (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2407.17773
Zhang, F., Li, C., Henkel, O., Xing, W., Baral, S., Heffernan, N., & Li, H. (2024). Math-LLMs: AI Cyberinfrastructure with Pre-trained Transformers for Math Education. International Journal of Artificial Intelligence in Education.https://doi.org/10.1007/s40593-024-00416-y
Zhao, J., Zhang, Z., Zhang, Q., Gui, T., & Huang, X. (2024). LLaMA Beyond English: An Empirical Study on Language Capability Transfer. ArXiv. https://doi.org/10.48550/arXiv.2401.01055
DOI: https://doi.org/10.22190/FUTLTE250429005S
Refbacks
- There are currently no refbacks.
ISSN 2560 – 4600 (Print)
ISSN 2560 – 4619 (Online)