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Abstract. The simultaneous effects of mechanical impact and Winkler-Pasternak foundation 

on the dynamic response of an Euler-Bernoulli beam are studied. By means of the Galerkin-

Bubnov procedure, the governing equation with partial derivatives is reduced to an ordinary 

differential equation. This nonlinear equation is solved by means of the Optimal Homotopy 

Asymptotic Method (OHAM). 
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1. INTRODUCTION 

Vibration of a beam under mechanical impact and resting on a nonlinear Winkler-

Pasternak foundation is interesting as the basic research on vibration problems considering 

practical bridges. Some of the previous works have been the study of Ansari et al. [1]. They 

found the existence of the attractors at modest oscillation levels during investigations with 

realistic parameters. Abiala [2] used the finite element method and Neimark’s integration 

to obtain the dynamic response of beams under uniformly distributed moving loads. The 

fourth-order Runge-Kutta method is applied by Ding et al. [3] to three types of conventional 

boundary conditions. The geometrical nonlinearities are considered by Nbendjo and Woafo 

[4], showing that the single-mode dynamic of the beam can be described by a Φ6 potential 

with various configurations. Poorjamishidian et al. [5] analyzed the nonlinear vibration for 

a simply supported beam with a constant velocity carrying a moving mass. 
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Pirmoradian and Karinpour [6] explored dynamic stability in the Hamiltonian formulation. 

The vibration of viscoelastic axially moving Rayleigh and Euler-Bernoulli beam is investigated 

by Shariati et al. [7]. Herisanu and Marinca [8] studied the nonlinear vibration of a beam 

under mechanical impact in the presence of an electromagnetic actuator. 

The present study is devoted to the nonlinear forced vibration of a beam resting on a 

nonlinear Winkler-Pasternak elastic foundation subjected to a mechanical impact. The time 

response of the beam has been obtained using the Optimal Homotopy Asymptotic Method 

(OHAM). The results show that the result of the analytical procedure has a very good 

correspondence with numerical integration results. 

2. THE GOVERNING EQUATION 

The physical model of a simply supported beam of length L subjected to a mechanical 

impact by the force F and resting on the Winkler-Pasternak foundation with linear and 

nonlinear springs K1 and K3 respectively is presented in Fig. 1.   

  

Fig. 1 Geometry of the beam under mechanical impact and elastic foundation 

The Young’s modulus E, a mass density ρ and the cross-sectional area A of the beam 

are supposed to be constants. The transverse and longitudinal displacements are w(x,t) and 

u(x,t), respectively. 

The deflection of an element of length ds of the beam at rest is defined by  

 𝑑𝑠 = [(1 +
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑥
)

2

]
1/2

𝑑𝑥 (1) 

If the terms of the forms 𝑢𝑥
2, 𝑢𝑥𝑤𝑥

2, 𝑢𝑥
3, 𝑢𝑥

2𝑤𝑥
2, 𝑢𝑥

4, where 𝑢𝑥 =
𝜕𝑢

𝜕𝑥
, are neglected, from 

Eq.(1) one can get: 

 
𝑑𝑥

𝑑𝑠
= [(1 + 𝑢𝑥)2 + 𝑤𝑥

2]−
1

2 ≅ 1 − 𝑢𝑥 −
1

2
𝑤𝑥

2 +
3

8
𝑤𝑥

4 (2) 

The unit vector parallel to the defined element (1) can be written in the form 

 �̅� = [(1 + 𝑢𝑥)𝑖̅ + 𝑤𝑘𝑗]̅
𝑑𝑥

𝑑𝑠
 (3) 

The tension in the beam is 

 𝑇 = −𝐸𝐴𝑒 (4) 

in which e is defined as 

 𝑒 =
𝑑𝑥−𝑑𝑠

𝑑𝑥
= 1 −

𝑑𝑠

𝑑𝑥
≅ 𝑢𝑥 +

1

2
𝑤𝑥

2 −
3

8
𝑤𝑥

4 (5) 
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The dynamics of the beam is defined by the equation [4]: 

 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 + 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 = −
𝜕

𝜕𝑥
(𝑇�̅�)𝑗̅ + 𝐹𝑚𝑖 + 𝐹𝑤𝑝 (6) 

where I is the moment of inertia of the beam cross-section, Fmi and Fwp are the impact force 

and nonlinear elastic foundation, respectively. 

Substituting Eqs. (3)-(5) into Eq.(6), we obtain 

 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 + 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 = −𝐸𝐴
𝜕

𝜕𝑥
(𝑒

𝜕𝑤

𝜕𝑥
) + 𝐹𝑚𝑖 + 𝐹𝑤𝑝 (7) 

It is known that the material term in Eq.(5) is small such that 
𝑑

𝑑𝑥
(𝑒) = 0. 

It follows that 

 𝑢𝑥 +
1

2
𝑤𝑥

2 −
3

8
𝑤𝑥

4 = 𝑒 = 𝐶 (8) 

where C is a constant which can be determined by integrating the last equation 

 𝑢(𝑥) = 𝑢(0) + 𝐶𝑥 −
1

2
∫ (

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝑥

0
+

3

8
∫ (

𝜕𝑤

𝜕𝑥
)

4

𝑑𝑥
𝑥

0
 (9) 

Using the boundary conditions for the longitudinal displacement: u(L,t)=u(0,t)=0, from 

Eq.(9) we have that 

 𝑒 = 𝐶 =
1

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝐿

0
−

3

8𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

4

𝑑𝑥
𝐿

0
 (10) 

From Eqs. (7) and (10) one can get 

 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 + 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 =
𝐸𝐴

2𝐿

𝜕2𝑤

𝜕𝑥2 [∫ (
𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝐿

0
−

3

4
∫ (

𝜕𝑤

𝜕𝑥
)

4

𝑑𝑥
𝐿

0
] + 𝐹𝑚𝑖 + 𝐹𝑤𝑝 = 0 (11) 

The term Fmi represents the mechanical impact of load F: 

 𝐹𝑚𝑖 = 𝐹𝛿(𝑥 − 𝑣𝑡) (12) 

where v is the speed of the load and δ is the Dirac-delta function. 

The nonlinear elastic medium of the Winkler-Pasternak type is given by 

 𝐹𝑤𝑝 = −𝐾1𝑤 − 𝐾3𝑤3 (13) 

Inserting Eqs. (12) and (13) into Eq. (11) one retrieves: 

 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 + 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 −
𝐸𝐴

2𝐿

𝜕2𝑤

𝜕𝑥2 [∫ (
𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝐿

0
−

3

4
∫ (

𝜕𝑤

𝜕𝑥
)

4

𝑑𝑥
𝐿

0
] − 

−𝐾1𝑤 − 𝐾3𝑤3 = 𝐹𝛿(𝑥 − 𝑣𝑡)    (14) 

with the simply supported beam, such that the boundary conditions are 

 𝑤(0, 𝑡) = 𝑤(𝐿, 𝑡) =
𝜕2𝑤(0,𝑡)

𝜕𝑥2 =
𝜕2𝑤(𝐿,𝑡)

𝜕𝑥2 = 0 (15) 

To express the governing Eqs. (14) and (15) in nondimensional form, the following 

parameters are defined: 

 �̅� =
𝑊

𝐿
, �̄� =

𝑥

𝐿
, �̄� =

𝑡

𝐿2 √
𝐸𝐼

𝜌𝐴
, �̄� = 𝑣𝐿√

𝜌𝐴

𝐸𝐼
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                                  �̄� =
𝐿2𝐴

2𝐼
, 𝐾1 = 𝐾1

𝐿4

𝐸𝐼
, 𝐾3 = 𝐾3

𝐿2

𝐸𝐼
�̄�0 =

𝐹𝐿4

𝐸𝐼
 (16) 

Omitting the bar, Eq. (14) can be rewritten in nondimensional form as 

 
𝜕2𝑤

𝜕𝑡2 +
𝜕4𝑤

𝜕𝑥4 − 𝛼
𝜕2𝑤

𝜕𝑥2 [∫ (
𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
1

0
−

3

4
∫ (

𝜕𝑤

𝜕𝑥
)

4

𝑑𝑥
𝐿

0
] − 

−𝐾1𝑤 − 𝐾3𝑤3 = 𝑓𝛿(𝑥 − 𝑣𝑡)    (17) 

Using the Galerkin-Bubnov procedure, the solution of Eq.(17) can be assumed to be of 

the form 

 𝑤(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) (18) 

in which, taking into account the conditions (15), X(x) can be expressed as 

 𝑋(𝑥) = √2sin𝜋𝑥 (19) 

Inserting Eqs. (18) and (19) into Eq.(17) and multiplying this equation by X(x), and 

then integrating on the domain [0,1] it holds that 

 �̈� + 𝜔2𝑇 + 𝑎𝑇3 + 𝑏𝑇5 = 𝑓𝑠𝑖𝑛𝜋𝑣𝑡 (20) 

where the dot denotes the derivative with respect to time and  

 𝜔2 = ∫
𝑑2𝑋(𝑥)

𝑑𝑥2 𝑋(𝑥)𝑑𝑥
1

0
− 𝐾1 ∫ 𝑋2(𝑥)𝑑𝑥

1

0
; 

a=-𝛼 [∫ (
𝑑𝑋(𝑥)

𝑑𝑥
)

2

𝑑𝑥
1

0
] [∫

𝑑2𝑋(𝑥)

𝑑𝑥2 𝑋(𝑥)𝑑𝑥
1

0
− 𝐾3 ∫ 𝑋4(𝑥)𝑑𝑥

1

0
]; 

                           𝑏 =
3

4
𝛼 [∫ (

𝑑𝑋(𝑥)

𝑑𝑥
)

4

𝑑𝑥
1

0
] [∫

𝑑2𝑋(𝑥)

𝑑𝑥2 𝑋(𝑥)𝑑𝑥
1

0
] ; 𝑓 = √2𝑓0 (21) 

for the nonlinear differential Eq. (20), the initial conditions are 

 𝑇(0) = 𝐴,  �̇�(0) = 0 (22) 

The Eqs. (20) and (22) are very difficult to be analytically solved to obtain exact 

solutions. In what follows, for Eqs. (20) and (22) we will apply the OHAM to obtain an 

analytical approximate solution. 

3. THE OPTIMAL HOMOTOPY ASYMPTOTIC METHOD 

We will apply OHAM to the following nonlinear differential equation [9-11]: 

 𝐿[𝑇(𝑡)] + 𝑁[𝑇(𝑡)] = 0 (23) 

whose boundary conditions are 

 𝐵 (𝑇(𝑡),
𝑑𝑇(𝑡)

𝑑𝑡
) = 0 (24) 

In Eq.(23), L and N are linear operators and nonlinear operators, respectively. If �̅�(𝑡) 

is the unknown approximate solution of Eq. (23)-(24), then we can write that 

 �̅�(𝑡) = 𝑇0(𝑡) + 𝑇1(𝑡) (25) 
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where the initial approximation T0(t) can be evaluated from the linear equation  

 𝐿[𝑇0(𝑡)] = 0,     𝐵 (𝑇0(𝑡),
𝑑𝑇0(𝑡)

𝑑𝑡
) = 0 (26) 

The first approximation T1(t) can be evaluated from the linear equation 

 𝐿[𝑇1(𝑡)] = 𝐻(𝑡, 𝐶1, 𝐶2, … , 𝐶𝑛)𝑁[𝑇0(𝑡)],     𝐵 (𝑇1(𝑡),
𝑑𝑇1(𝑡)

𝑑𝑡
) = 0 (27) 

where H(t,C1,C2,…,Cn) is an arbitrary auxiliary function. This auxiliary function and 

N[T0(t)] should be of the same shape. The parameters C1, C2, …,Cn which appear on the 

first-order approximate solution obtained from Eq. (27) can be determined in many ways, 

using for example the least square method, the Galerkin method, the collocation method, 

the Ritz method or by minimizing the square residual error.  

With these parameters known (namely the convergence-control parameters), the 

approximate solution (25) is well-determined. 

4. APPLICATION OF OHAM TO THE NONLINEAR VIBRATION OF THE BEAM 

Making the transformations 

 𝜏 = Ω𝑡, 𝑇(𝑡) = 𝐴Ψ(𝜏) (28) 

in which Ω is the unknown natural frequency of the beam, Eq. (20) becomes 

 Ψ′′ +
𝜔2

Ω2 Ψ +
𝛼𝐴2

Ω2 Ψ3 +
𝑏𝐴4

Ω2 Ψ5 =
𝑓

𝐴Ω2 𝑠𝑖𝑛
𝜋𝑣

Ω
𝜏,   Ψ(0) = 1, Ψ′(0) = 0 (29) 

where the prime denotes derivative with respect to τ. 

The linear operator and nonlinear operator of Eq. (29) are respectively 

 𝐿[Ψ(𝜏)] = Ψ′′ + Ψ ;   N[Ψ(𝜏)] = (
𝜔2

Ω2 − 1) Ψ +
𝛼𝐴2

Ω2 Ψ3 +
𝑏𝐴4

Ω2 Ψ5 −
𝑓

𝐴Ω2 𝑠𝑖𝑛
𝜋𝑣𝜏

Ω
 (30) 

The initial approximation ψ0(τ) is determined from Eqs. (26) and (30): 

 Ψ0
′′ + Ψ0 = 0,   Ψ0(0) = 1, Ψ0

′(0) = 0 (31) 

and has the solution 

 Ψ0(𝜏) = 𝑐𝑜𝑠𝜏 (32) 

Substituting Eq. (32) into the nonlinear operator (30) one gets: 

 N[Ψ0(𝜏)] = 𝑀1𝑐𝑜𝑠𝜏 + 𝑀3𝑐𝑜𝑠3𝜏 + 𝑀5𝑐𝑜𝑠5𝜏 + 𝑃𝑠𝑖𝑛
𝜋𝑣𝜏

Ω
 (33) 

where the constants Mi and P are given by 

 M1 =
𝜔2

𝛺2 − 1 +
3𝑎𝐴2

4𝛺2 +
5𝑏𝐴4

8𝛺2  ; M3 =
𝑎𝐴2

4𝛺2 +
5𝑏𝐴4

16𝛺2; M5 =
𝑏𝐴4

16𝛺2  ; 𝑃 = −
𝑓

𝐴Ω2 (34) 

The auxiliary function H(τ,C1,C2,…,Cn) from Eq. (27) is chosen such that the product 

H(τ,C1,C2,…,Cn)N[ψ0(τ)] and N[ψ0(τ)] be of the same form. The auxiliary functions 

H(τ,C1,C2,…,Cn) and the natural number n are not unique. For example, we can 

alternatively choose these auxiliary functions in the following expressions: 

 H1(τ, C1, C2, C3, C4) = C1 + 2C2𝑐𝑜𝑠2𝜏 + 2C3𝑐𝑜𝑠4𝜏 + 2C4𝑐𝑜𝑠6𝜏 (35) 
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 H2(τ, C1, C2) =  C1 + 2C2𝑐𝑜𝑠2𝜏 (36) 

 H3(τ, C1, C2, C3) = C1 + 2C2𝑐𝑜𝑠4𝜏 + 2C3𝑐𝑜𝑠6𝜏 (37) 

 H4(τ, C1, C2, C3) = C1 + 2C2𝑐𝑜𝑠2𝜏 + 2C3𝑐𝑜𝑠4𝜏 (38) 

and so on. Using only the expression (35), Eq. (27) can be written as follows: 

Ψ1
′′ + Ψ1 = [𝑀1(𝐶1 + 𝐶2) + 𝑀3(𝐶2 + 𝐶3) + 𝑀5(𝐶3 + 𝐶4)]𝑐𝑜𝑠𝜏 + 

[𝑀3(𝐶1 + 𝐶4) + 𝑀1(𝐶2 + 𝐶3) + 𝑀5𝐶2]𝑐𝑜𝑠3𝜏 + 

[𝑀5𝐶1 + 𝑀3𝐶2 + 𝑀1(𝐶3 + 𝐶4)]𝑐𝑜𝑠5𝜏 + [𝑀5𝐶2 + 𝑀3𝐶3 + 𝑀1𝐶4]𝑐𝑜𝑠7𝜏,   

Ψ1(0) = Ψ1
′(0) = 0     (39) 

No secular terms into Eq. (39) require that the coefficient of τ be zero. From this 

condition, one can put the natural frequency: 

 Ω2 = 𝜔2 +
3

4
𝑎𝐴2 +

5𝑏𝐴4

8
+ (

𝑎𝐴2

4
+

5𝑏𝐴4

16
)

𝐶2+𝐶3

C1+C2
+

𝑏𝐴4

16

𝐶3+𝐶4

C1+C2
 (40) 

The solution of Eq. (39) is 

Ψ1(𝜏) =
𝑀1(𝐶2+𝐶3)+𝑀3(𝐶1+𝐶4)+𝑀5𝐶2

8
(𝑐𝑜𝑠𝜏 − 𝑐𝑜𝑠3𝜏) +

𝑀1(𝐶3+𝐶4)+𝑀3𝐶2+𝑀5𝐶1

24
(𝑐𝑜𝑠𝜏 −

𝑐𝑜𝑠5𝜏) +
𝑀1𝐶1+𝑀3𝐶3+𝑀5𝐶2

48
(𝑐𝑜𝑠𝜏 − 𝑐𝑜𝑠7𝜏) +

𝑀3𝐶4+𝑀5𝐶3

80
(𝑐𝑜𝑠𝜏 − 𝑐𝑜𝑠9𝜏) +

𝑀3𝐶1

120
(𝑐𝑜𝑠𝜏 −

𝑐𝑜𝑠11𝜏)                                           (41) 

The approximate solution of Eqs. (20) and (22) are obtained from Eqs. (25), (28), (32) 

and (41) as: 

�̅�(𝑡) = 𝐴𝑐𝑜𝑠𝛺𝑡 +
𝐴[𝑀1(𝐶2+𝐶3)+𝑀3(𝐶1+𝐶4)+𝑀5𝐶2]

8
(𝑐𝑜𝑠𝛺𝑡 − 𝑐𝑜𝑠3𝛺𝑡) +

𝐴[𝑀1(𝐶3+𝐶4)+𝑀3𝐶2+𝑀5𝐶1]

24
(𝑐𝑜𝑠𝛺𝑡 − 𝑐𝑜𝑠5𝛺𝑡) +

𝐴[𝑀1𝐶1+𝑀3𝐶3+𝑀5𝐶2]

48
(𝑐𝑜𝑠𝛺𝑡 − 𝑐𝑜𝑠7𝛺𝑡) +

𝐴[𝑀3𝐶4+𝑀5𝐶3]

80
(𝑐𝑜𝑠𝛺𝑡 − 𝑐𝑜𝑠9𝛺𝑡) +

𝐴𝑀3𝐶1

120
(𝑐𝑜𝑠𝛺𝑡 − 𝑐𝑜𝑠11𝛺𝑡)                                     (42) 

in which Ω is evaluated from Eq. (40). 

5. NUMERICAL RESULTS 

To illustrate the accuracy of OHAM, we consider the parameters ω=1.3, A=0.5, a=0.24, 

b = 0.16, v = 0.414, f = 0.001. 

Using a collocation approach, there are obtained the values C1 = 0.092731330625,     

C2= -1.2082598891606, C3 =1.199106193799, C4=-0.593752904778. 

Figure 2 presents the solution (42) in comparison with the numerical integration results. 

One can see that the error between the approximate solution and the numerical result is 

very small. 
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Fig. 2 Comparison between approximate solution (42) and numerical integration results: 

_ _ _ _ analytical; ______ numerical 

6. CONCLUSIONS 

In the present research, we propose the Optimal Homotopy Asymptotic Method (OHAM) 

to obtain an approximate analytical solution to the nonlinear differential equation of vibration 

of a beam subjected to mechanical impact and resting on the Winkler-Pasternak elastic 

nonlinear foundation. The validity of our procedure was demonstrated appropriately by 

choosing the linear operator and auxiliary function.  

A numerical example is given and a very good agreement was found between the 

approximate analytical results and numerical simulation. Our proposed procedure is valid 

even if the nonlinear differential equation does not contain any small parameters. 
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