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Abstract. The Optimal Auxiliary Functions Method (OAFM) is applied in the study of 

nonlinear vibration of a nanobeam, considering the curvature of the beam, the presence 

of an electromagnetic actuator and a mechanical impact. Our procedure is based on the 

existence of some auxiliary functions which assure a fast convergence of the approximate 

solution. The convergence-control parameters present in the auxiliary functions are 

evaluated by rigorous mathematical procedures. 
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1. INTRODUCTION 

The study of the vibration of a nanobeam under mechanical impact in the presence of 

an electromagnetic actuator accounting for the curvature of the beam is interesting for 

researchers because many structures include the nanobeam. Textile fibers, flexible 

satellites, paper sheets, oil pipelines, airplane wings, and so on. Nanobeams have attracted 

considerable attention in the literature. For example, Ghayesh [1] investigated the forced 

nonlinear vibrations of an axially moving beam fitted with an intra-span spring-support 

which is solved by the pseudoarclength continuation technique. The thermo-mechanical 

nonlinear vibration and stability of a hinged-hinged axially moving beam additionally 

supported by a nonlinear spring-mass support are examined by two numerical procedures 
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by Kazemirad et al. [2]. To obtain static pull-in voltage with fringing field effects in an 

electrostatically actuated cantilever and clamped-clamped microbeam, Rokni et al. [3] 

proposed a novel method for converting a governing fourth-order differential equation into 

a Fredholm integral equation. Peng et al. [4] presented a nonlinear electro-dynamic analysis 

for a size-dependent microbeam made of materials with nonlinear elasticity by employing 

the modified behavior of electrically actuated carbon nanotubes-based nano-actuator 

including the higher-order strain gradient deformation, the geometric nonlinearity, the 

slack effect and the temperature gradient effects. 

The effect of a magnetic field on the nonlinear vibration response of single-walled 

carbon nanotubes based on nonlocal strain gradient theory is studied by Anh and Hieu [5]. 

Using the equivalent linearization method with weighted averaging value, expressions of 

the nonlinear frequencies are obtained in the analytical forms. Yinussa and Sobamovo [6] 

explored nonlinear internal flow-induced vibration and stability of a pre-tensioned 

nanotube that rests on an elastic foundation. 

In the present work, the nonlinear forced vibration of a nanotube under the influence of 

mechanical impact and an electromagnetic actuator considering the curvature of the beam 

is investigated. The nonlinearity of the equation is caused by the curvature of the nanobeam 

and of the electromagnetic actuator. The governing equation is discretized using the 

Galerkin-Bubnov procedure. The obtained nonlinear differential equation is solved by 

using OAFM. A very accurate solution is obtained using a moderate number of 

convergence-control parameters via auxiliary functions. 

2. FORMULATION OF THE PROBLEM 

A simply supported nanobeam of length L subjected to a mechanical impact by force F 

and electromagnetic load VDC is presented in Figure 1. The transverse and longitudinal 

displacements are w(x,t) and u(x,t) respectively.   

 

Fig. 1 A simply supported nanobeam subjected to impact force F and electromagnetic 

actuator  

The Euler-Bernoulli beam theory proves that the displacement fields of any point are  

 𝑢𝑥(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
 

𝑢𝑦(𝑥, 𝑧, 𝑡) = 0 

𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡)                               (1) 
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The axial strain εxx and shear strain γxz of the beam, considering von Karman’s 

nonlinear strain are 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

− 𝑧𝑘,   𝛾𝑥𝑧 =
𝜕𝑢𝑥

𝜕𝑥
+

𝜕𝑢𝑦

𝜕𝑦
= 0                      (2) 

where 

 𝑘 =
𝜕2𝑤

𝜕𝑥2 [1 + (
𝜕𝑤

𝜕𝑥
)

2

]
3/2

⁄  (3) 

is the curvature of the beam. 

The kinetic energy of the beam is 

 𝐾𝑒 =
1

2
𝜌𝐴 ∫ [(

𝜕𝑢

𝜕𝑡
)

2

+ (
𝜕𝑤

𝜕𝑡
)

2

] 𝑑𝑥
1

0
  (4) 

while the first variation of the strain energy is 

 𝛿𝑈𝑠 = ∫ (𝜎𝑥𝑥𝛿𝜖𝑥𝑥)𝑑𝑉
𝑉

  (5) 

where σxx is the stress: σxx=E εxx, E being the elasticity modulus. 

Substituting Eq. (2) into Eq. (5) one can get 

 𝛿𝑈𝑠 = ∫ [𝑁𝛿 (
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

) − 𝑀𝛿 (
𝜕2𝑤

𝜕𝑥2 )] 𝑑𝑥
𝐿

0
  (6) 

in which N and M are the axial force and bending moment respectively. The stress 

resultants used in Eq. (6) are defined as 

 𝑁 = ∫ 𝜎𝑥𝑥𝑑𝐴
𝐴

, 𝑀 = ∫ 𝑧𝜎𝑥𝑥𝑑𝐴
𝐴

  (7) 

where A is the area of the cross-section for the nanobeam. 

The strain energy Us can be written as 

 𝑈𝑠 =
1

2
∫ [𝑁 (

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

) − 𝑀 (
𝜕2𝑤

𝜕𝑥2 )] 𝑑𝑥
𝐿

0
  (8) 

The virtual work by the external mechanical impact and electromagnetic actuator is given by 

 𝛿𝑊 = ∫ 𝑞𝛿𝑊𝑑𝑥
𝐿

0
  (9) 

where 

 𝑞 = 𝐹𝛿(𝑥 − 𝑣𝑡) +
1

2

𝐶0𝑉𝐷𝐶
2

[𝑑−𝑤(𝑥,𝑡)]2 −
1

2

𝐶0𝑉𝐷𝐶
2

[𝑑+𝑤(𝑥,𝑡)]2  (10) 

in which C0 is the capacitance of the actuator, d is the gap width and VDC is the voltage. 

The expression of the electromagnetic actuation can be simplified as 

 
1

2

𝐶0𝑉𝐷𝐶
2

[𝑑−𝑤(𝑥,𝑡)]2 −
1

2

𝐶0𝑉𝐷𝐶
2

[𝑑+𝑤(𝑥,𝑡)]2 =
2𝐶0𝑉𝐷𝐶

2

𝐿
[

𝑊

𝑑
+ 2 (

𝑊

𝑑
)

3

+ 3.0925 (
𝑊

𝑑
)

5

]  (11) 

The variational form of the equation of motion can be obtained by Hamiltonian 

principle 
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 𝛿 ∫ [𝐾𝑒 − 𝑈𝑠 + 𝑊)]𝑑𝑡
𝑡2

𝑡1
= 0 (12) 

From Eqs. (4), (8), (9) and (12) and integrating by parts, and then collecting the 

coefficients of δu and δw we obtain the following equations of motion 

 
𝜕𝑁

𝜕𝑥
− 𝜌𝐴

𝜕2𝑢

𝜕𝑡2  (13) 

𝜕2𝑀

𝜕𝑥2
−

𝜕

𝜕𝑥
(𝑁

𝜕𝑤

𝜕𝑥
) +

2𝐶0𝑉𝐷𝐶
2

𝑑2
[
𝑊

𝑑
+ 2 (

𝑊

𝑑
)

3

+ 3.0925 (
𝑊

𝑑
)

5

] + 𝐹𝛿(𝑥 − 𝑣𝑡) = 

= 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 − 𝜌𝐼
𝜕4𝑤

𝜕𝑡2𝜕𝑥2 (14) 

where N and M from Eq. (7), become by integration: 

 𝑁 = 𝐸𝐴 [
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

] (16) 

 𝑀 = −𝐸𝐼
𝜕2𝑤

𝜕𝑥2 [1 + (
𝜕𝑤

𝜕𝑥
)

2

]
3/2

⁄   (17) 

Usually, the longitudinal inertial term 
𝜕2𝑢

𝜕𝑡2  into Eq. (13) can be neglected, such that from 

Eq. (13) it is clear that N is a constant N=C and therefore from Eq. (16) it holds that 

 
𝜕𝑢

𝜕𝑥
=

𝐶

𝐸𝐴
−

1

2
(

𝜕𝑤

𝜕𝑥
)

2

 (18) 

By integrating the last equation with the boundary conditions 

 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0 (19) 

the constant C is given by 

 𝐶 = 𝑁 = −
𝐸𝐴

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝐿

0
 (20) 

According to the Eq. (17), the term which defines the curvature of the beam can be 

written in the form: 

 
𝜕2𝑤

𝜕𝑥2 [1 + (
𝜕𝑤

𝜕𝑥
)

2

]
3/2

⁄ ≅
𝜕2𝑤

𝜕𝑥2 [1 −
3

2
(

𝜕𝑤

𝜕𝑥
)

2

]  (21) 

such that the nonlinear equation of motion for the nanobeam can be obtained by substituting 

Eqs. (20), (21) and (17) into Eq. (14) as follows: 

 𝐸𝐼 [
𝜕4𝑤

𝜕𝑥4 −
3

2

𝜕4𝑤

𝜕𝑥4 (
𝜕𝑤

𝜕𝑥
)

2

− 3 (
𝜕2𝑤

𝜕𝑥2 )
3

− 9
𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2

𝜕3𝑤

𝜕𝑥3 ] + 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 +
2𝐶0𝑉𝐷𝐶

2

𝑑2 [
𝑊

𝑑
+ 2 (

𝑊

𝑑
)

3

+

3.0925 (
𝑊

𝑑
)

5

] + 𝜌𝐼
𝜕4𝑤

𝜕𝑡2𝜕𝑥2 −
𝐸𝐴

2𝐿

𝜕2𝑤

𝜕𝑥2 ∫ (
𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝐿

0
= 𝐹𝛿(𝑥 − 𝑣𝑡)  (22) 

The following nondimensional quantities are considered: 

 �̅� =
𝑥

𝐿
, �̅� =

𝑤

𝑑
, 𝑡̅ =

𝑡

𝐿2 √
𝐸𝐼

𝜌𝐴
, �̅� =

𝐼

𝐴𝐿2 , �̅� =
2𝐶0𝐿4𝑉𝐷𝐶

𝑑3𝐸𝐼
, �̅� = 𝑣𝐿√

𝜌𝐴

𝐸𝐼
, 𝑓̅ =

𝐹𝐿4

𝐸𝐼
 (23) 
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Omitting the bars, the nondimensional form of the Eq. (22) can be written as 

𝜕2𝑤

𝜕𝑡2 +
𝜕4𝑤

𝜕𝑥4 −
3

2

𝜕4𝑤

𝜕𝑥4 (
𝜕𝑤

𝜕𝑥
)

2

− 3 (
𝜕2𝑤

𝜕𝑥2 )
3

− 9
𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2

𝜕3𝑤

𝜕𝑥3 + 𝛽(𝑤 + 2𝑤3 + 3.0925𝑤5) −

1

𝛼

𝜕4𝑤

𝜕𝑡2𝜕𝑥2 −
𝛼

2

𝜕2𝑤

𝜕𝑥2 ∫ (
𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
1

0
= 𝑓𝛿(𝑥 − 𝑣𝑡)                           (24) 

The solution of Eq. (24) can be assumed, according to the Galerkin-Bubnov procedure 

to be of the form 

 𝑤(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) (25) 

By substitution of Eq. (25) into Eq. (24) and then multiplying Eq. (24) by X(x) and 

integrating on the domain [0,1], using the expression 

 ∫ 𝑓(𝑥)𝛿(𝑥 − 𝑣𝑡)𝑑𝑥 = 𝑓(𝑣𝑡)
1

0
 (26) 

one can obtain the following nonlinear differential equation of motion 

 �̈� + 𝜔2𝑇 + 𝑎𝑇3 + 𝑏𝑇5 = 𝑓0(𝑣𝑡), 𝑓0(𝑣𝑡) = 𝑓𝑋(𝑣𝑡) (27) 

where the dot denotes the derivative with respect to time and the parameters which appear 

into Eq. (27) are 

  𝑞 = ∫ [𝑋2(𝑥)𝑑𝑥 + 𝛼𝑋(𝑥)
𝑑2𝑋(𝑥)

𝑑𝑥2 ]
1

0
𝑑𝑥 

𝜔2 =
1

𝑞
[∫

𝑑4𝑋(𝑥)

𝑑𝑋4
𝑋(𝑥)

1

0

𝑑𝑥 + 𝛽 ∫ 𝑋2(𝑥)𝑑𝑥

1

0

] 

𝑎 = −
3

𝑞
∫ [𝑋(𝑥)

𝑑4𝑋(𝑥)

𝑑𝑥4 (
𝑑𝑋(𝑥)

𝑑𝑥
)

2

+ 𝑋(𝑥) (
𝑑2𝑋(𝑥)

𝑑𝑥2 )
5

+ 3𝑋(𝑥)
𝑑𝑋(𝑥)

𝑑𝑥

𝑑2𝑋(𝑥)

𝑑𝑥2

𝑑3𝑋(𝑥)

𝑑𝑥3 ] 𝑑𝑥
1

0
−

1

2𝛼𝑞
[∫

𝑑𝑋(𝑥)

𝑑𝑥

1

0
𝑑𝑥] [∫ 𝑋(𝑥)

𝑑2𝑋(𝑥)

𝑑𝑥2

1

0
𝑑𝑥] −

𝛽

𝑞
∫ 𝑋4(𝑥)𝑑𝑥

1

0
,     𝑏 = 3.0925 ∫ 𝑋5(𝑥)

1

0
𝑑𝑥 (28) 

In the present study, we consider the case of a simply supported beam, and therefore 

the boundary conditions are 

 𝑤(0, 𝑡) =
𝜕2𝑤(0,𝑡)

𝜕𝑥2 = 0,   𝑤(1, 𝑡) =
𝜕2𝑤(1,𝑡)

𝜕𝑥2 = 0 (29) 

The eigenfunction X(x) can be expressed from Eq. (29) as 

 𝑋(𝑥) = 𝑠𝑖𝑛𝜋𝑥 (30) 

For the nonlinear differential Eq. (27), where 𝑓0(𝑡) = 𝑓𝑠𝑖𝑛𝜋𝑣𝑡, the initial conditions 

are  

 𝑇(0) = 𝐴, �̇�(0) = 0 (31) 

For nonlinear Eq. (27) and (31) we will apply OAFM [7-11]. 
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3. APPLICATION OF OAFM TO THE NONLINEAR EQUATION OF NANOBEAM 

To find an analytical approximate solution for nonlinear differential Eq. (27) and (31) 

near the primary resonance ω≈πv, we make the transformation 

 𝜏 = Ω𝑡,   𝑇(𝑡) = 𝐴𝜃(𝜏) (32) 

Eqs. (27) and (31) can be rewritten as 

 𝜃′′ + (
𝜔

Ω
) θ +

𝑎𝐴2

Ω2 𝜃3 +
𝑏𝐴4

Ω2 𝜃5 =
𝑓0

𝐴Ω2 𝑠𝑖𝑛
𝜔𝜏

Ω
 ,   θ(0) = 1, θ′(0) = 0 (33) 

where the prime denotes the derivative with respect to τ and Ω is the frequency of the 

system. The linear and nonlinear operators corresponding to Eq. (33) are respectively: 

 𝐿[θ(𝜏)] = 𝜃′′ + θ , 𝑁[θ(𝜏)] = (
𝜔2

Ω2 − 1) θ +
𝑎𝐴2

Ω2 𝜃3 +
𝑏𝐴4

Ω2 𝜃5 −
𝑓0

𝐴Ω2 𝑠𝑖𝑛
𝜔𝜏

Ω
  (34) 

The approximate solution of Eq.(34) can be written as  

 θ̅(𝜏) = θ0(𝜏) + θ1(𝜏)  (35) 

The initial approximate solution θ0(𝜏) is determined from the linear differential equation  

 θ0
′′(𝜏) + θ0(𝜏) = 0,     θ0(0) = 1, θ0

′ (0) = 0 (36) 

whose solution is  

 θ0(𝜏) = 𝑐𝑜𝑠𝜏 (37) 

Inserting Eq. (37) into the second expression of Eq. (34), it holds that 

 𝑁[θ0] = 𝑁1𝑐𝑜𝑠𝜏 + 𝑁3𝑐𝑜𝑠3𝜏 + 𝑁5𝑐𝑜𝑠5𝜏 − 𝑁6𝑠𝑖𝑛
𝜔𝜏

Ω
  (38) 

where 

 𝑁1 =
𝜔2

Ω2 − 1 +
3𝑎𝐴2

4Ω2 +
5𝑏𝐴4

8Ω2 , 𝑁2 =
𝑎𝐴2

4Ω2 +
5𝑏𝐴4

46Ω2 , 𝑁5 =
𝑏𝐴4

16Ω2  𝑁6 = −
𝑓0

𝐴Ω2  (39) 

From Eq. (38) we propose the following linear equation for the first approximation: 

Θ1
′′ + θ1 = (𝐶1 + 2𝐶2𝑐𝑜𝑠2𝜏 + 2𝐶3𝑐𝑜𝑠4𝜏)(𝑁1𝑐𝑜𝑠𝜏 + 𝑁3𝑐𝑜𝑠3𝜏), 

   θ1(0) = θ1
′ (0) = 0 (40) 

After some manipulations, Eq. (40) can be written as 

 θ1
′′ + θ1 = [(𝐶1 + 𝐶2)𝑁1 + (𝐶2 + 𝐶3)𝑁3]𝑐𝑜𝑠𝜏 + [(𝐶2 + 𝐶3)𝑁1 + 𝐶1𝑁3]𝑐𝑜𝑠3𝜏 +

[𝐶2𝑁3 + 𝐶3𝑁1]𝑐𝑜𝑠5𝜏 + 𝐶3𝑁3 𝑐𝑜𝑠7𝜏                            (41) 

Avoiding the secular term in the last equation, we can find the frequency of the system: 

 Ω2 = 𝜔2 +
3𝑎𝐴2

4
+

𝑎𝐴2

4

𝐶2+𝐶3

𝐶1+𝐶2
 (42) 

The solution of Eq. (40) becomes 

 Θ1(𝜏) =
(𝐶2+𝐶3)𝑁1+𝐶1𝑁3

8
(𝑐𝑜𝑠𝜏 − 𝑐𝑜𝑠3𝜏) +

𝐶2𝑁3+𝐶3𝑁1

24
(𝑐𝑜𝑠𝜏 − 𝑐𝑜𝑠5𝜏)                
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𝐶3𝑁3

48
(𝑐𝑜𝑠𝜏 − 𝑐𝑜𝑠7𝜏) (43) 

The approximate solution of Eqs. (27) and (31) becomes: 

 �̅�(𝑡) = 𝐴𝑐𝑜𝑠Ω𝑡 +
𝐴[(𝐶2+𝐶3)𝑁1+𝐶1𝑁3

8
(𝑐𝑜𝑠Ω𝑡 − 𝑐𝑜𝑠3Ω𝑡) +

𝐴[𝐶2𝑁3+𝐶3𝑁1

24
(𝑐𝑜𝑠Ω𝑡 −

𝑐𝑜𝑠5Ω𝑡) +
𝐴𝐶3𝑁3

48
(𝑐𝑜𝑠Ω𝑡 − 𝑐𝑜𝑠7Ω𝑡)                 (44) 

where Ω is given by Eq. (42). The convergence control parameters are determined by 

minimizing the residual of the initial equation. 

4. NUMERICAL APPLICATION 

The efficiency of OAFM can be proved through the following particular case: ω= 1.5, 

A = 1, a = 0.88, b = 1.23, f = 0.001, v = 0.478. 

The obtained values of the convergence-control parameters are: C1 = 0.750030876926, 

C2 = -1.069177153794, C3 = 0.013599617044 

Fig.2 shows the comparison between the approximate solution (44) and the numerical 

solution obtained by a fourth-order Runge-Kutta approach.  

  

Fig. 2 Comparison between the analytical solution (44) and numerical integration results 

for Eqs. (27) and (31),  numerical; _ _ _ _ Eq.(44) 

It can be observed that our approximate solution for the nanobeam obtained through 

OAFM is nearly identical to the numerical integration results, which proves the efficiency 

of our analytical technique. 

4. CONCLUSIONS 

According to the present results, the oscillatory behavior of simply supported uniform 

nanobeam, taking into consideration the curvature of the beam, is studied. The Bernoulli-

Euler beam is subjected to a mechanical impact using the Dirac-delta function and the 

electromagnetic actuation. The OAFM procedure was applied to solve the complex 

nonlinear differential equation introducing so-called auxiliary functions and some 
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convergence-control parameters, without supplementary hypothesis. These parameters are 

optimally determined by rigorous mathematical procedures. Our technique leads to a very 

accurate solution using only one iteration. It should be emphasized that any nonlinear 

dynamical system is reduced to only two linear differential equations. 
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