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Abstract. Illumination-induced vibrational phenomena can significantly affect the 

mechanical behavior of micro-mechanical sensors (MEMS) and, consequently, the noise 

performance of detectors based on these sensors. In this paper, we study thermoelastic 

deflection induced by photothermal heating of a solid micro-mechanical cantilever 

illuminated by a short square laser pulse. An analytical-numerical technique based on 

the Laplace transform is employed to calculate the spectral function of lateral deflection. 

The results indicate that the profile of laser-induced vibrations depends on the temporal 

shape of the excitation optical pulse. The square pulse enhances the increasing trend of 

the high-frequency lateral vibration amplitude peak if cantilever thickness increases 

suggesting the possibility of size-dependent engineering of the properties of detectors 

utilizing micro-mechanical cantilevers. 

Key words: photothermal effect, generalized thermoelasticity, cantilever, micro 

resonator, nano electro-mechanical systems  

1. INTRODUCTION 

Laser-induced heating of a solid, also known as the photothermal (PT) effect [1–3], causes 

a temperature gradient within the illuminated sample, altering the temperature profile and, 

consequently, generating expansions and contractions in the optically excited sample [4–6]. 

This mechanism has attracted considerable attention due to the extensive application of lasers 

 
Received October 28, 2024 / Accepted December 4, 2024 

Corresponding author: Mladena Lukić  
University of Niš, Faculty of Occupational Safety, Čarnojevića 10a, 18000 Niš, Serbia 

E-mail: mladena.lukic@znrfak.ni.ac.rs 

https://orcid.org/0000-0002-6728-8868
https://orcid.org/0000-0002-1397-8011
https://orcid.org/0000-0003-1105-3637
https://orcid.org/0000-0001-7688-3792


466 S. GALOVIĆ, K. ĐORĐEVIĆ, M. LUKIĆ, D. CHEVIZOVICH 

in material processing and the non-destructive detection and characterization of various 

materials and devices, including biomedical diagnostics [7–13]. Laser-induced vibrations of 

thin cantilevers have also gained significant attention because of their technological applications 

in Micro-Electro-Mechanical Systems (MEMS) and Nano-Electro-Mechanical Systems 

(NEMS) [14–17]. 

The analysis of thermoelastic displacements requires examining the coupled temperature 

and deformation fields [5]. In the case of ultra-short-pulsed laser heating, the high-intensity 

energy flux and ultra-short laser beam duration create situations where very large thermal 

gradients or ultra-high heating speeds may occur at the boundaries. In such cases, as noted 

by many investigators, the classical Fourier model, which implies an infinite propagation 

speed of thermal energy, is no longer valid [17–23]. The non-Fourier effect of heat conduction 

accounts for thermal relaxation time in the relationship between heat flux and the temperature 

gradient, thereby resolving this contradiction. For this reason, a generalized model of the 

thermoelastic problem, known as the Lord-Shulman model, was proposed. It introduces a 

hyperbolic theory of heat conduction that incorporates the non-Fourier effect [24]. This model 

has been applied in many studies of thermoelastic deformation induced by modulated laser 

beams or pulsed laser irradiation [25–27]. 

In the literature, one can find studies addressing optically generated vibrations of a thin 

cantilever of finite length illuminated by pulses with smooth rising and falling edges, such as 

Gaussian and non-Gaussian time profiles of short duration [16,27]. However, in many 

applications of semiconducting micro-mechanical devices, the time dependence of the 

excitation beam is better described by short square pulses or a series of such pulses [28–31]. 

Therefore, this paper derives a model of thermoelastic vibrations in a micro-mechanical 

cantilever, assuming that the time dependence of the optical excitation can be described by a 

short square pulse. 

Based on the derived model, the spectral function of the lateral displacement profile for 

low and high harmonics is calculated and analyzed. The dependence of the high-frequency 

amplitude peak of midpoint deflection on the cantilever thickness is also investigated. 

Finally, the most important conclusions are presented. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

We consider the micro-mechanical resonator (MMR) illustrated in Fig. 1, whose length 

is denoted as L, and whose cross-section is rectangular, with linear dimensions b and h that 

are much smaller than the sample length L.  

The initial temperature distribution T(x, y, z, t = 0) is assumed to be equal to the 

environmental temperature T0. From the moment t = 0, the upper surface of the resonator 

(z = h/2) is uniformly irradiated by a short laser pulse. 

 0 0( ) ( ) ( ( ) ( ))pS t S f t S h t h t t= = − −  (1) 

where tp is the duration of a laser pulse and S0 is the laser irradiance (total energy carried 

by a laser pulse per unit of cross section of the sample per unit of time). 

Absorbed electromagnetic energy generates thermal source along the z − axis 

(photothermal effect) Q(z,t) [27]: 
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where  is the absorption depth of electromagnetic energy (inverse coefficient of optical 

absorption) and Ra is the coefficient of optical reflection of irradiated surface. 

 

Fig.1 Geometry of the problem 

Since the heat source depends on only one spatial coordinate (zcoordinate), the 

photothermally induced heat transfer within the micro-mechanical resonator (MMR) can be 

described as a one-dimensional problem. In this case, the non-Fourier thermal conduction 

that includes the thermoelastic coupling term has the following form [24]: 
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 is 

volumetric strain, coefficient  is defined by  = ET(1−2v)  in which v is Poisson’s ratio, 

E is Young’s modulus, and T is coefficient of linear expansion of the sample, cv is the heat 

capacity,   is the mass density of the sample, k
 
is heat conductivity, and 0 is the thermal 

relaxation time (this parameter has not yet been measured in any material at room 

temperature, and estimates of its value for semiconductors and dielectrics range from the 

order of magnitude of microseconds to the order of picoseconds [27,32,33], meaning that 

the influence of this parameter should be taken into account for laser pulses of picosecond 

duration.) In Eq. 3, we neglected the influence of photogenerated electrons and electron-

phonon interactions on sample heating [34–37]. With u, v, w are denoted the displacements 

in the direction of x, y, and z-axis, respectively, Fig. 1. 

By considering that there is no heat flow across the upper and lower surfaces of MMR, 

the following boundary conditions can be defined: 
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the photothermally generated displacement of MMR is described by using the usual Euler-

Bernoulli assumption [27]: 

 
w

u z
x


= −


, 0v =  , ( , , , ) ( , )w x y z t w x t= , (5) 

where w the lateral deflection (see Fig. 1). 

The differential equation of thermally induced lateral deflection w of the sample can be 

written in the form: 
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where MT is thermal moment, which is defined as: 
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and I is the moment of inertia for the structure illustrated in Fig. 1, I = bh3/12. 

For a very thin resonator, Eq. 7, can be reduced to [27]:  
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where p =  / h. 

By using Eqs. 2, 3 and 6, 8, the generating equations for the coupled thermoelastic 

problem can be obtained as follows: 
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1

1

(1 2 ) (1 2 ) a

a

a a e
a

e


+ + −

=  , /a h= , and 

 0
( )

( ) ( )
f t

t f t
t




 = +


. (11) 

The problem described by Eqs. 3, 8, and 9-11 with zero initial conditions is a standard 

problem, the solution of which, for different methods of strengthening a thin micro-

cantilever (Fig. 1), describes the lateral deflection profile and its dependence on time. The 

temporal shape of the excitation pulse f (t) affects the lateral deflection through the function 

(t) in Eq. 10. In the literature, a similar description of the problem can be found for optical 
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excitation in the form of an asymmetric Gaussian function [27]. The problem described in 

this section is more general because it includes any time dependence of the excitation pulse. 

In this paper, the problem of lateral deflection is solved under the assumption that the 

sample is clamped on both sides: 

0
( , , ) ( , , )

0x x L
w x z t w x z t

x x
= =

 
= =

 
,   ( 0, , ) ( , , ) 0w x z t w x L z t= = = = , (12) 

and that the moment of temperature is equal to zero in the places where the sample is 

clamped: 

 ( 0, ) ( , ) 0T TM x t M x L t= = = = . (13) 

We did the calculation by introducing dimensionless coordinates 
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where E
v


=  is the longitudinal speed of propagation of elastic deformation. 

We also introduced two dimensionless variables: dimensionless deflection W(,) and 

dimensionless thermal moment, (,): 
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Since the problem described by Eqs. 3, 8, 9, and 11 is linear in time, it can be solved 

by the application of Laplace transform on time dependence variables. This transform, as 

well as dimensionless coordinates and considered variables, reduce the problem to two 

ordinary differential equations in a complex domain: 
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with zero boundary conditions (see Eqs. 12 and 13). In the above equations, the bar above 

symbols is introduced to denote variables and coefficients dependent on the complex 

frequency s , and G(s) denotes the Laplace transformation (spectral function) of the 

function (t), which depends on the temporal shape of the optical excitation (Eq. 11). 

Coefficients 1 3A A−  are complex quantities that depend on the dimensions and 

properties of the sample: 
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while the coefficient 4A  is real and equal to: 
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If the second derivative of the dimensionless moment from Eq. 16 is replaced in Eq. 

17, the expression for the generalized moment is obtained: 
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which, by double differentiation and substitution in Eq.16, gives the differential equation 

that describes the lateral deflection along the dimensionless axis  (in the x-axis direction, 

Fig. 1): 
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where the coefficients in differential equation Eq. 21 are defined by the following expressions: 

 
2 3( )a A A= − +  , 1b A=  , 1 2c A A= − . (22) 

From Eqs. 21 and 22, one could mistakenly conclude that the lateral deflection does not 

depend on the irradiance, the temporal shape, and the duration of the excitation optical pulse, 

because neither the coefficient A4 nor the function G(s) appears anywhere. However, the 

resulting differential equation indicates that only the form of the fundamental solutions will 

be the same for any irradiance and for any time-dependent form of excitation, including a 

simple periodic modulated optical beam. The total solution, which represents a linear 

combination of the fundamental solutions, depends on the coefficients by which the fundamental 

solutions are multiplied. These coefficients, through the boundary conditions, depend on the 

irradiance, the temporal shape of the optical excitation, and the length of its duration. 

The solution of linear homogeneous differential equation of the sixth order Eq. 21 can 

be found in the literature [27,38] and the solution procedure will not be presented here. 

This solution is given by a linear combination of fundamental solutions: 
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where  j are roots of characteristic equation for differential equation Eq. 21: 
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Parameters A, P, Q, and  are related with complex coefficients of Eq.21 as follows: 
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By replacing Eq. 23 in 20, the solution for the dimensionless moment is also obtained: 
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Where constants Kj are defined by the following expression: 

 4 2

3 1j j jK A A = − +  (27) 

As can be seen from the Eq. 26, the thermal moment depends on the irradiance, temporal 

shape, and duration of optical excitation directly, through the particular solution, but also 

indirectly, through the constants Cj. 

The constants Cj can be determined by substituting Eqs. 23 and 26 into zero boundary 

conditions and solving the following matrix equation: 
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By numerical solving Eq. 28 and replacing the obtained constants in Eq. 23, we obtained 

the spectral functions of lateral displacement for short square optical pulse. 

3. RESULTS AND DISCUSSIONS 

We analyze the thermoelastic displacement excited by a square laser pulse of short 

duration for MMR made of silicon. The material parameters are given in Tab. 1 [27]. We 

take, as it was done in [27], that the aspect ratios of MMR are fixed as L/h = 10 and 

b/h = 0.5. The time duration of laser pulse is tp = 2ps and the intensity of laser pulse is 

S0 = 1011 W/m2. Parameter Ra depends on the material of the resonator and wavelength of 

laser beam. We take that Ra = 0.5. 

Table 1 Material parameters used in calculation 

Properties Denotations Value 

Young modul E 169 GPa 

Mass density  2330 kg/m3 

Heat capacity cv 713 J/kgK 

Coefficient of linear expansion T 2.59 x10-6 1/K 

Poisson’s ratio v 0.22 

Thermal conduction k 156 W/mK 

The Laplace transform of time dependence of heat source in Eq. 1 generated by square 

pulse is given by [40]: 
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The calculated distribution of spectral function of dimensionless lateral deflection along 

the dimensionless axis normal to the direction of optical excitation (Eqs. 23, 27, 28) is 

illustrated in Fig. 2 for a few harmonics.   

 
Fig. 2 a) The distribution of lateral deflection along the axis normal to the direction of 

optical excitation for following harmonics f = 1 kHz (black line), f = 10 kHz (red 

line), and b) f = 100 kHz (green line) 

As can be seen from Figs. 2a and 2b, the maximum deflection (deflection peak) appears 

at the midpoint of the micro-cantilever for all harmonic excitation. This peak decreases when 

the frequency of harmonic increases. The form of lateral deflection depends on the frequency 

of harmonics: for lower harmonics, this form is symmetric in relation to the midpoint ( = 0.5, 

x = L/2) but for higher harmonic, this form becomes asymmetric due to the influence of 

spectral function of heat source induced by optical excitation, Eq. 28. It means that the 

temporal shape of optical excitation influences to distribution of lateral deflection. 

High-frequency micro-cantilever vibrations are utilized in various types of oscillators 

and the development of different methods for non-destructive testing of materials [28,39]. 

Figure 3 shows the dependence of the midpoint amplitude of lateral vibrations (amplitude 

peak) on the frequency of the excitation harmonics. 

 

Fig. 3 The spectral function of midpoint lateral deflection 
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As shown in Fig. 3, the deflection peaks decrease rapidly with an increase in the frequency 

of the excitation harmonics, indicating that high-frequency vibrations generated by short optical 

excitation can be neglected.  

Based on the derived model for the spectral function of the sample deflection (Eq. 23) 

the height of maximal deflection amplitude (peak of deflection) is calculated f = 100 kHz 

and its dependence on sample thickness h is shown in Fig. 4. 

 

Fig. 4 The peak of deflection for samples of different thicknesses 

Figure 4 shows a trend of increasing amplitude of the high-frequency peak of lateral 

deflection with increasing sample thickness, consistent with the model presented in [39] 

for a thin semiconducting disk excited by a high-frequency square pulse train, and contrary 

to the results presented in [27] for a micro-cantilever excited by a short non-Gaussian pulse. 

This indicates that the temporal shape of the excitation pulse affects this trend. 

By applying the numerical inverse Laplace transform to the spectral function of 

dimensionless lateral displacement in Eq. 23, one can obtain the time-domain displacement 

for various temporal shapes of optical excitation. We attempted to solve the inverse Laplace 

transform for a square laser pulse of duration tp (Eq. 1) numerically, using the MATLAB 

function INVLAP. However, this function did not yield good results for high-resolution 

changes in the dimensionless time coordinate because the sharp optical profile causes a 

steep wavefront of thermo-elastic deformation [41]. 

A detailed analysis of the impact of the square optical pulse on the time-dependent 

behavior of the temperature moment and lateral deflection requires the development of a 

numerical algorithm for solving the inverse Laplace transform for functions with sharp 

fronts [41], which is the subject of our further research. 

4. CONCLUSIONS 

In this paper, the model of photothermally induced vibration of lateral deflection is 

derived. The model is based on the Lord-Shulman theory of thermoelastic vibrations with 

the Euler-Bernoulli approximation. The derived model is more general than those in the 

literature because it includes any time-dependent optical excitation, enabling the study of 

the influence of the temporal shape of optical excitation on the vibrational characteristics 

of the deflection of micro-cantilevers. 
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Based on the derived model, the vibrational characteristics of the deflection of an Euler-

Bernoulli micro-cantilever induced by a short square laser pulse are analyzed. The obtained 

results indicate that the spatial profile of laser-induced vibrations depends on the frequency 

spectrum of the excitation and, consequently, on the temporal shape of the laser pulse. The 

lateral vibrational peaks are scale-dependent, independent of the temporal shape of the laser 

pulse, but this shape influences the trend of either increase or decrease. For a square laser 

pulse, as the sample thickness increases, the peak deflection increases, indicating the 

possibility of size-dependent engineering of the high-frequency properties of various 

detectors that utilize micro-mechanical cantilevers. 

Both the analysis of the frequency spectrum of the temperature moment based on the 

derived model and the time-domain analysis of lateral vibrations for various temporal 

shapes of the laser pulse are subjects of our ongoing investigations. 
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