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Abstract. The aim of this paper is to eliminate the ambiguities that appear in the 

literature relating to the saturation charge of particles in electrostatic precipitators. 

Investigation of the influence of collection electrode geometry on electric field strength 

in electrostatic precipitator, the saturate charge of particle that directly depends on, is 

the second main goal. The numerical results for electric field and potential distribution 

for various cross sections (polygonal) of tubular electrostatic precipitator geometry are 

shown. This analysis may lead to a quantification of the efficiency of the electrostatic 

precipitator depending on the geometry of collection electrodes, whose shape affects the 

distribution of the electric field, thus creating the possibility of design improvement. 

Key words: electrostatic precipitator, collection electrode, polygonal cross section, 

saturation charge, point matching method.  

1. INTRODUCTION 

The corona discharge in the electrical precipitation of smoke particles from gases was 

first described by the German mathematician M. Johann Cristoph Hohlfeld in 1824. The 

German physicist Robert Nahrwold, in 1878, noticed that the great collection of 

atmospheric dust appeared on electrified metal cylinder in the middle of which the sewing 

needle was placed. The first unsuccessful attempt to remove lead fume from smelting 

works was done by Sir Oliver Lodge in 1885. The first commercial electrostatic 

precipitator (ESP) was constructed in 1906 and patented in 1908 by an American Physical 

Chemist Dr Frederick Gardner Cottrell, [1]. 
Since then, efforts have been made to increase the efficiency of these precipitators, 

especially because it has already proven to be irreplaceable in collecting nanoparticles. 

Mathematical models of different complexity have been developed for the description of 
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the collecting particles mechanism and consequently for calculation of theoretical 

efficiency [2, 3]. On the other hand, much attention is given to experimental research 

which usually does not comply with theoretical results, [4, 5]. Finally, the rapid development of 

information technology has enabled a detailed simulation of work of ESP [6, 7], but 

theoretical approach is still a major challenge. In tubular ESP, the shape of collection 

electrode has strong influence on electric field strength and, therefore, on the overall 

efficiency. This influence is being considered in this paper. 

1.1. Theoretical efficiency of ESP 

A number of factors affect the ability of the ESP to collect particles. They can be 

divided into three main groups. The first group includes the mechanical and electrical 

characteristics of the particles. The second group covers physical and chemical properties 

of the carrier fluid. Finally, the third group implies structural design of ESP (tubular or 

plate), method of charging (single-stage or two-stage), the temperature of operation (cold-

side or hot-side), the method of particle removal from collection areas (wet or dry). The 

most important features that are applied are electric potential, shape and size of discharge 

and collection electrodes. 

Whilst the qualitative effects of these factors on the collection performance are well known, 

the quantitative effects are not so clear, and therefore, a well known Deutsch-Anderson 

collection formula [8], in spite of numerous flaws, is still the basic in design of the ESP. 

 1

wS

Qe


   (1) 

Where:  is particle collection efficiency, 

 S is total surface area of precipitator collection electrodes, 

 Q is gas volumetric flow rate through the ESP tubes, and 

 w is particle terminal velocity. 
 

 

Volumetric flow rate and active surface of collection electrodes are easily changeable 

quantities. On the other hand, it is not easy to determine the velocity of the particles, and 

it is even more complex to affect its value. 

1.2. Particle theoretical terminal velocity  

Motion of particles in a fluid is determined by the balance between the internal and the 

external forces acting on a particle of the radius a , (see Fig. 1). 

 0F ,  i.e. DBIGE FFFFF   (2) 

Here: 

 
qEFE   is electrostatic force, q is particle charge and E is 

electric field strength. 

 
gVgmF pppG   is gravitational force, where mp, p, Vp are mass, density 

and volume of a particle respectively and g is average 

acceleration due to gravity. 

 
t

w
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d
  is inertial force on a particle moving with velocity w. 

 B f f pF m g V g   is buoyant force where f is fluid density. 



 Particles Charging in Tubular Electrostatic Precipitators with Polygonal Collection Electrodes 15 

 
6 /D cF a w C 

 

is Stokes' drag force in a fluid with viscosity . Cunningham 

slip correction factor Cc is used for small particles drag 

force calculations. 

In describing the settling of particles in air, the density of the air f  is much less than 

the particle density P and there for FB<< FG. Furthermore, gravitational force could be 

neglected due to small mass of a particle, e.g. in practice electrical force is essentially 

much stronger than the gravitational force ( GE FF 3910~ ). Finally, remaining forces give 

the equation of a particle motion and the corresponding solution. 
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After a short period of time exponential term can be neglected which means that 
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  (4) 

The quantity w is theoretical migration velocity (component of particle velocity 

perpendicular to the collecting walls), also known as drift, terminal or settling velocity. 

Obviously, this is the solution of steady state problem. It should be emphasized that due 

to the electric force and the drag force of a medium which have the dominant values, 

inertial term could be omitted at the outset. This formula for theoretical terminal velocity 

do not take into account many factors such as inertia, fluid velocity or inhomogeneity of 

electric field strength distribution. 

Diameter of the particles depends on the technological process. Slip factor is determined 

by the particle size and the mean free path length of the particles [8]. For this reason, these 

parameters can not be influenced upon. Definitely, in the design of ESP, it is possible to 

affect only the magnitude of charge and electric field strength. 

2. SATURATION CHARGE OF A PARTICLE 

Dielectric sphere of permittivity  and of radius a is placed in permittivity vacuum 0. 

External uniform electric field E0 is oriented in z-direction. Due to the axial symmetry the 

potential  does not depend on the azimuth coordinate and the distribution of electric 

scalar potential can be obtained by integration of two dimensional Laplace's equation in 

spherical coordinates. The governing equation and boundary conditions at origin, at the 

interface between the two dielectric media and at infinity lead to a well known solution 

for internal and external region, respectively, [9, 10]. 
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In the vicinity of the sphere the potential is equal to the sum of the potentials of the 

primary and induced electric fields.The influence of induced electrical charge can be 

replaced by an equivalent electric dipole with electric dipole moment p


. 
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The surface density of the induced charge and, consequently, the total or saturation 

charge of a particle are then 
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The formula (7) without 0 in numerator is commonly attributed to Pauthenier. Almost 

all the papers [11, 12, 13] relating to ESP, apparently suffering from the propagation of 

this result produce, as we might say, the effect of traveling mistake. In the limiting case 

when   , i.e. when the particle is perfect conductor, the above formula degenerates in 

form that can be found in literature. 

As mentioned before, a diameter of particle is an unchangeable parameter as well as 

dielectric constant and the only point, in process of precipitation of particles at which it is 

possible to improve the efficiency of ESP is a strength of electric field. Substituting (7) in 

(4) gives, 
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and it is necessary to distinguish between two electric fields. The first E0 makes the 

ionization of the particles in the vicinity of ionizing (inner, corona or discharge) 

electrode, while the second E attracts the particles to the collection (outer) electrode. 

3. ELECTRIC FIELD IN TUBULAR ELECTRODE SYSTEM OF ESP 

The electrode system of tubular electrostatic precipitator is composed of the inner tube 

at a high potential  = U and an outer coaxial cylinder, which is grounded  = 0. The 

cross section of the inner electrode is a circle of radius R1. The outer electrode has an 

equiangular polygon cross section which is inscribed in a circle of radius R2. Cylindrical 

coordinate system is assumed. The central angle of N -gon is 2 / N  , where N is the 

number of vertices (Fig. 1).   

 

Fig. 1 Tubular ESP cross section geometry 
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The solution of Laplace's equation that satisfies boundary conditions on the inner 

electrode must be even and -periodic function in all cases, including the circle N , 

it can be obtained from the general solution, [10]. 
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The constants of integration 0 and i should be determined by satisfying boundary 

conditions  = 0 on outer electrode r = R2. Only in the trivial case, when the outer 

electrode is circle, this can be done exactly. In this case, potential depends only on the 

radial coordinate and the well known result will be obtained, [9]. 
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As there is no analytical solution of Laplace’s equation for a circular-polygonal 

geometry, a numerical method should be used. Suitable choice is the method of moments 

[14]. In that sense, the approximate solution of the problem will be assumed in the form 

of the series (9) that should be truncated at some finite order M. Boundary condition 

should be satisfied in 1M  discrete points on outer electrode and this is equivalent to 

using a delta function as the weighting function in the method of moments. This choice is 

referred to as the point matching method. On that way, the ansatz (9) converts into a 

system of linear equations. 

Matching points should be evenly spaced in the angle 0 / 2   . 
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The system of linear equations has to be solved for the unknown coefficients i. In the 

special case M = 0 the system of linear equations is reduced to the single linear equation. 

At the point given by j = 0 electric potential should be matched to zero and the solution 

gives zero order approximation for electric potential distribution and electric field 

strength. These results should be compared (10). 
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In the general case, the electric field has two components, which are determined as a 

potential degradient (9). 

 

1 1

0

1 1 1 1

cos( )

iN iN
M

r i

i

iN r r
E iN

r r R R R


 

  



    
         

      
  (13) 

 




 
















































M

i

iNiN

i iN
R

r

R

r

r

iN

r
E

1 11

)sin(  (14) 



18 D. PETKOVIĆ, M.RADIĆ, D. ZIGAR 

On the surface of the inner electrode r = R1 tangential component of electric field is 

equal to zero which is consistent with the boundary conditions. The charge per unit length 

on this conductor has to be calculated from the normal component of the electric field. 

Integration over Gaussian surface gives zero contribution for all terms but 0 . 
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 The capacitance per unit length should be used for testing the convergence of applied 

method. However, it can be shown that satisfactory accurate results are obtained with only 

a few matching points, [10, 15]  

On the inner surface of the outer electrode r = R2, boundary conditions for tangential 

component of an electric field and electric potential are satisfied only approximately. In 

fact, the boundary condition is satisfied exactly only at the matching points. 

4. NUMERICAL RESULTS 

This section deals with the presentation of numerical results for electric potential and 

electric field within tubular electrode system of ESP with collection electrodes of a 

polygonal type. These results are obtained using the proposed method. In addition, the 

presented illustrative results for distribution of electric potential are obtained using finite 

element method and shown in Fig. 3.  

The numerical results for electric potential according to the zero order approximation 

formula (12) are given in Table 1, for various number of vertices N and ratio of radii 

R2/R1. As expected, the greatest potential gradient occurs in a triangular cross section, and 

is reasonable to assume that such an electrode system can be more efficient than one with 

a circular cross section. 

The results for capacity per unit length, depending on the number of matching points 

are shown in Table 2. When N is a large number, polygon tends to circle and well known 

results for the capacitance per unit length of a conventional coaxial lines are obtained, 

even with a few matching points. Hence, it is also seen that the zero order approximation 

formula is quite accurate for design purposes. The strength of an electric field in the 

vicinity of the ionizing electrode is even greater if the number of vertices of the polygon 

is less. This fact again leads to the conclusion that greater efficiency can be expected with 

this kind of ESP  

Table 1 Zero order approximation, 0 /U  

12 / RR  3N  4N  6N  N  

2    2.8854 1.8205 1.4427 

5  1.0914 0.7919 0.6823 0.6213 

10  0.6213 0.5112 0.4632 0.4343 

20  0.4343 0.3775 0.3506 0.3338 

50  0.3107 0.2805 0.2654 0.2556 
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Table 2 Test of convergence, 0/(2 )C  , 5/ 12 RR  

M  3N  4N  6N  10N  

0  1.0914 0.7919 0.6823 0.6413 

1  0.8955 0.6005 0.4663 0.3947 

2  0.9329 0.6991 0.5882 0.5305 

5  0.9590 0.7380 0.6446 0.6014 

10  0.9610 0.7446 0.6581 0.6211 

 

Fig. 2 Normalized electric field, 5M , 0   

 

Fig. 3 Electric potential in tubular ESP electrode system 

a) circular, b) hexagonal, c) square, d) triangular 

5. SUMMARY AND GENERAL CONCLUSION 

This paper highlights the need for analytical relationship between overall efficiency of 

a tubular ESP and the shape of the collection electrode. In the second part of the paper, 

the formula for saturation charge is developed. This should be useful in the correction of 

errors that appear in the reference lists. On the other hand, it is the quantity which can be 

directly affected by the constructive characteristics of the ESP, such as cross section 

pattern. The distribution of an electric potential and electric field in tubular ESP with 

collection electrodes of polygonal type are discussed in the third part of the paper. The 
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approximate but satisfactory accurate formulas for these distributions have been derived. 

This could be further utilized to develop the relationship between electrode shape pattern 

and overall ESP efficiency. In the immediate vicinity of the electrodes, the angular 

component of the electric field can be ignored, and according to (8), expression (16) is 

approximately correct, as it was supposed to report to. 
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Similar considerations can be carried out in other areas of applied electromagnetics, 

such as the analysis of atypical coaxial lines [16]. 
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NAELEKTRISAVANJE ČESTICA 

U CEVASTIM ELEKTROSTATIČKIM FILETERIMA 

SA POLIGONALNIM TALOŽNIM ELEKTRODAMA 

Cilj rada je da ukaze na nejasnoće koje se javljuju u literaturi vezano za izraze za brzinu 

taloženja čestica i količinu naelektrisanja u elektrostatičkim filterima. Ispitivanje uticaja geometrije 

taložne elektrode na jačinu električnog polja u elektrostatičkim filterima, od koje direktno zavisi i 

količina naelektrisanja, je drugi predmet istraživanja. U radu su prikazani numerički rezultati za 

raspodelu električnog polja i potencijala za različite poprečne preseke mnogougaone taložne 

elektrode. Ova analiza treba da dovede do konstitutivne veze između oblika taložne elektrode, koja 

najbitnije utiče na jačinu električnog polja, i efikasnosti elektrostatičkog filtera što pruža mogućnost 

poboljšanja performansi filtera u fazi projektovanja. 

Kljuĉne reĉi: elektrostatički filter, taložna elektroda, zasićenje naelektrisanjem, poligonalni 

poprečni presek, metod podešavanja u tačkama. 
 


