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Abstract. This paper describes a new procedure for design of complementary IIR 

digital filters based on group delay approximation. The filters are realized as parallel 

sum of two all-pass filters, a structure for which low complexity implementations exist. 

The problem with phase warping which is inevitable if filter design is made through 

phase approximation will be solved using a proposed method. Adequate initial solution 

is also proposed. Realized amplitude characteristics of complementary filters will be 

approximately equiripple. The design examples illustrate that the proposed algorithm 

is very efficient in terms of computation time and number of iterations. 
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1. INTRODUCTION 

Digital all-pass filter is efficient signal processing building block which is very useful in 

many applications as notch filtering, complementary filtering, multirate filtering,, etc. In 

many signal processing applications transfer function of the filter must be determined 

according to magnitude or phase response constraints which depend on the application [1]. 

In some signal processing applications digital filters linear phase characteristic is of vital 

interest. There are a lot of methods for design of digital filters with linear phase. One well 

known method is all-pass filter implementation for realization of selective digital filter with 

linear phase. Digital IIR filters designed by parallel connection of two all-pass filters exhibits 

small sensitivity of amplitude characteristic in the pass-band on coefficients quantization. In 

general these filters can provide arbitrary phase, but it is also possible to realize filter with 

approximately linear phase characteristic in both pass-band and stop-band [4], [5]. 

Because of these features and a fact that number of bits using for representation of digital 

filter coefficients depends on sensitivity of amplitude characteristic caused huge interest for 

                                                           
Received November 6, 2014 / Accepted December 30, 2014 

Corresponding author: Goran Stanĉić 

Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia 

Phone: +381 18 529 100  E-mail: goran.stancic@elfak.ni.ac.rs 



120 G. STANĈIĆ, S. NIKOLIĆ, D. MANĈIĆ, I. JOVANOVIĆ 

these filter types in last several years [6],[7]. Realization of the filter through parallel 

connection of two all-pass filters allows that only with one additional adder we can realize a 

complementary filter [2],[3]. If the aim is to design only one filter, it is possible to 

independently control the value of the attenuation in the pass-band and stop-band by 

adequately choosing the number of poles located in the pass-band and stop-band. If the aim 

is realization of the complementary filters, input parameters are minimal attenuations in the 

stop-bands while obtained attenuations in the pass-bands are very small in that case. 

Amplitude characteristics of these filters are functions of all-pass filters phases and 

design is usually carried out through all-pass filters phase approximation [12], [13], [14], 

[15], [16], [17]. However, during calculation of digital filters phase discontinuities can 

appear and this fact can cause difficulties during the calculation. For equiripple phase 

approximation case, if phase error is sufficiently small group delay characteristic will be 

approximately equiripple. Deviation from equiripple characteristic will be noticeable only 

near the pass-band edge i.e., only a few last extrema will be slightly higher comparing 

with other extrema in the approximation region. In this paper we used this fact in order to 

achieve design of complementary filters based on group delay approximation [10]. This 

method can be successfully used if prescribed minimal attenuation in the stop-bands is 

more than 40dB and this condition is fulfilled in almost all practical applications. 

The main disadvantage of this approach lies in the fact that approximation regions for 

phase and group delay are not the same. The consequence will be that boundaries of the 

group delay approximation regions and pass-band and stop-band boundaries of resulting 

filters do not match. We proposed a way how this problem can be overcome. 

At the end efficiency of the proposed method is illustrated with two examples. 

2. APPROXIMATION 

Transfer functions of complementary filters realized through parallel connection of 

two all-pass filters, displayed in Fig. 1, can be written in the next form: 
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where AN1(z) and AN2(z) are transfer functions of used all-pass filters. 

Selective amplitude characteristics are obtained by adequate signal phase difference in 

two parallel branches. Resulting amplitude characteristics are given by: 
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and corresponding phases are: 
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where Φ1(ω) and Φ2(ω) denote phase of all-pass filters. In regions where phase difference 

is approximately equal to zero pass-bands and in regions where phase difference is 

approximately equal to π rad, stop-bands are obtained. 

 

Fig. 1 Realization of IIR selective complementary digital filters  

using parallel connection of two all-pass filters 

The dependence between prescribed minimal attenuation in the stop-band and 

maximal attenuation in the pass-band of complementary filter is displayed in Fig. 2. It is 

obvious that if prescribed minimal attenuation is more than 40dB, corresponding maximal 

attenuation in the pass-band will be very small (less than 10
-3

dB). 

If phase Φ1(ω) and Φ2(ω) of all-pass functions AN1(z) and AN2(z), from Fig. 1 fulfils 

condition: 
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then the relations (1) and (3) represent amplitude and phase characteristic of low-pass filter, 

while relations (2) and (4) represent amplitude and phase characteristic of complementary high-

pass filter, where ωp and ωs are boundary frequencies of pass-band and stop-band respectively. 

Ideal phase characteristics (7) and (8) can be approximated in the filter design process. 

 

Fig. 2 Dependence between maximal attenuation in the pass-band  

and minimal attenuation in the stop-band of complementary filter 
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Amplitude characteristics of filters obtained using parallel connections of two all-pass 

networks depend on all-pass phases mutual relation. From this reason in existing literature 

design of all-pass parallel structure filters is usually done through all-pass phases 

approximation. However, during the calculation of digital filter phase discontinuities will 

appear making certain difficulties. This problem will be overcome if we use group delay 

approach. In this case group delay of all-pass filters AN1(z) and AN2(z) have to satisfy next 

condition: 
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Every pole and every zero of all-pass transfer function contribute to phase with π/2rad, 

and conditions (7) and (8) will be satisfied if orders of all-pass transfer functions AN1(z) 

and AN2(z) differs for one. If order of all-pass transfer function AN1(z) is N, than order of 

all-pass transfer function AN2(z) is N-1. 

All-pass filter AN2(z) has to guarantee constant group delay over whole frequency band 

[0, π]. If the order of all-pass filter is M it can be done if transfer function pole angles are 

equidistant following next relation:  
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where pole modulo ρi is less than 0.5. In this case group delay of all-pass function with 

high accuracy approximates constant group delay τid=N2=N-1 in whole frequency band [0, 

π] in equiripple manner. In most case of practical applications it is enough to take that ρi 

=0.3, i=1,2, ..., N-1. The other option is to choose delay line of order N-1. 

Group delay for all-pass filter of the order N is given with: 
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From the other side all-pass transfer function AN1(z) has to approximate group delay 

(9). In the case when order of filter is even or odd with real pole at π group delay has to 

satisfy the next system of equations: 
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where m1 and m2 represents number of extrema of group delay error function in the pass-band 

and stop-band respectively. Low-pass filter H(z) boundary frequencies of pass-band and stop-

band are marked with ωp and ωs. Parameter ε1 is maximal group delay error in the pass-band 

while ε2 is maximal group delay error in the stop-band for low-pass filter. Coefficients μi and νi 

are group delay deviation weighting factors. If μi=1 for i=1:m1+1 and if νi=1 for i=1:m2+1 
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equiripple characteristic will be obtained. Weighting factors are included in order to increase 

group delay error only near the boundary frequencies ωp and ωs in order to get approximately 

equiripple phase error. If group delay error was small enough, we concluded that it was 

sufficient to correct only three extrema starting from the boundary frequencies.  

Our aim is to achieve similar group delay error in the pass-band and stop-band in 

order to provide almost identical attenuation in the stop-band for complementary filters. 

Taking into account the fact that poles in the pass-band and stop-band are almost 

equidistant in order to get similar group delay error in both bands it is necessary to choose 

parameters m1 and m2 in such way that next condition is fulfilled: 
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System of the linear equations (13) can be written in the next form: 
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where elements of matrix A can be obtained from the next relation: 
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and increment vector ∆ is given with: 
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while column vector B is given with 
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where ρ
*
 and θ

*
 represents obtained pole modulo and pole phase from the previous 

iteration step. 

Initial solution from equation (11) will guarantee that group delay is equiripple with mean 

value equal to the order of filter N. Now we are solving system of equations (15) where group 

delay will be decreased in step 0.2 from τid=N-0.2 until τid=N-1. During the calculation, for 

group delay approximation boundary frequencies values we shall use ωp=0.9ωpfinal and 

ωs=1.1ωsfinal , where ωpfinal and ωsfinal are specified values for attenuation boundary frequencies. 

Using this, we shall get that attenuation at specified boundary frequency ωpfinal will be for sure 

higher than attenuation in the pass-band. In order to get final solution we are solving again the 

same system of equations (15) where τid=N-1 and using bisection method we are correcting 

boundary frequencies ωp and ωs until attenuation at frequency ωpfinal decrease enough to be the 

same as attenuation at the first extremum of the pass-band. 

Calculation stops when maximal element of increment vector ∆ is less than specified 

small value. 
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2. EXAMPLES 

The proposed method is illustrated with two examples. At the beginning of the first 

example all-pass filter is designed where group delay is approximated over regions 

[0:0.4π] and [0.6π: π]. The order of the delay line AN2(z) is 9 and the order of the all-pass 

filter AN1(z) is 10. Taking into account that there is symmetry between boundary 

frequencies, parameters m1 and m2 will be equal according to equation (14), ie. m1=m2=5. 

From the same reason weighting factors μi and νi will be symmetric, ie. μ6=ν1=2.5, 

μ5=ν2=1.57 and μ4=ν3=1.14. 

As we mentioned earlier group delay approximation band is not the same as phase 

approximation band. In the last iteration next parameter values are used: ωp=0.3892π and 

ωs=0.6108π. Using weighting coefficients μi we shall get that attenuation minimum which is 

closest to the boundary frequency ωp will be decreased and it will be almost identical to the 

other attenuation minimums. Similarly, νi coefficients do the same job with the first 

attenuation minimum of the low-pass filter which is closest to the boundary frequency ωs. By 

this way we achieved not only approximately equiripple magnitude characteristic but 

minimal attenuation in both stop-bands is increased for a few decibels. Including pass-band 

and stop-band boundary frequencies in vector of extrema two new equations are formed. 

Added equations provide opportunity to modify maximal group delay errors ε1 and ε2. For 

given filter order optimal values will be obtained in the last iteration. In our example group 

delay errors are the same, ε1=ε2=0.0520 as consequence of the existing symmetry. 

Poles of the obtained all-pass filter and weighting coefficients are given in Table 1. 

  

Fig. 3 Group delay of the all-pass filter  

of order N=10 

Fig. 4 Attenuation of the high-pass filter 

including (a) and without i 

coefficients (c), and attenuation 

of the low-pass filter including 

(b) and without (d) i 

coefficients, respectively 
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Table 1 Poles of the all-pass filter AN1(z) 

m1=m2=5 

μ6=ν1=2.5   μ5=ν2=1.57   μ4=ν3=1.14 

i ρi θi 

1 0.555440768384734 ±0.317690670860810 

2 0.586948145572312 ±0.946985650552696 

3 0.874918332321571 ±1.570796326794897 

4 0.586948145572312 ±2.194607003037097 

5 0.555440768384734 ±2.823901982728984 

Group delay characteristic of the obtained all-pass filter is displayed in Fig. 3. 

Attenuation of the complementary filters is presented in Fig. 4. It is clear that using 

weighting coefficients minimums which are closest to the boundary frequencies become 

almost identical to the other minimums and at the same time minimal attenuation is 

increased from 49dB to 52dB. 

Phase characteristic of the obtained all-pass filter and used delay line are displayed in 

Fig. 5 and corresponding all-pass filter approximation error is presented in Fig. 6. 

  

Fig. 5 Phase of the all-pass filter (a)  

and phase of the delay line (b) 

Fig. 6 Phase error of the all-pass filter 

Table 2 Poles of the all-pass filter 

m1=5   m2=9 

μ6=1.7   μ5=1.4   μ4=1.1   ν1=2.5   ν2=1.65   ν3=1.24 

i ρi θi 

1 0.708980964894012 ±0.227895868814686 

2 0.728264847443748 ±0.676998995789484 

3 0.924326924585543 ±1.099879576422855 

4 0.726188578750450 ±1.525174863602564 

5 0.702338050763929 ±1.975845566120250 

6 0.696711004980318 ±2.438398406539250 

7 0.695084722741491 ±2.906699180571980 

In the second example we designed a filter with boundary frequencies ωp=0.3π and 

ωs=0.4π. The order of the delay line AN2(z) is 13 and the order of the all-pass filter AN1(z) 
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is 14. In this example boundary frequencies are not symmetrical and according to 

equation (14) parameters m1 and m2 are 5 and 9 respectively. Weighting factors are 

displayed in Table 2 together with poles of the obtained all-pass filter. 

In this example group delay errors will not be the same, but ε1=0.2286, ε2=0.2052. 

Group delay characteristic of the obtained all-pass filter is displayed in Fig. 7. 

Attenuation of the complementary filters is presented in Fig. 8. It is obvious that using 

weighting coefficients minimums which are closest to the boundary frequencies become 

almost identical to the other minimums and at the same time minimal attenuation is 

increased as in the previous example. If the choice of the parameters m1 and m2 is 

according to equation (14) the difference between minimum attenuations for low-pass and 

high-pass filter will be only a few decibels. 

  

Fig. 7 Group delay of the all-pass filter  

of order N=14 

Fig. 8 Attenuation of the high-pass filter 

including (a) and without i 

coefficients (c), and attenuation 

of the low-pass filter including 

(b) and without (d) i 

coefficients, respectively 

  

Fig. 9  Phase of the all-pass filter (a)  

and phase of the delay line (b) 

Fig. 10 Phase error of the all-pass filter 
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Phase characteristic of the obtained all-pass filter and used delay line are displayed in 

Figure 9 and corresponding all-pass filter approximation error is presented in Fig. 10. 

3. CONCLUSION 

In this paper we have outlined a procedure for design of complementary filters based 

on group delay approximation. The filters are realized as parallel sum of two all-pass 

filters. The well-known fact is that approximation regions for phase and group delay are 

not the same. Despite this fact using the proposed method, specified attenuation boundary 

frequencies will be reached. Solving system of linear equations poles of the filters can be 

derived easily. Finally, two examples are given in order to demonstrate the effectiveness 

of the proposed method. 
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PROJEKTOVANJE REKURZIVNIH DIGITALNIH FILTARA 

APROKSIMACIJOM GRUPNOG KAŠNJENJA 

U radu je opisan nov postupak za projektovanje komplementarnih IIR digitalnih filtara baziran 

na aproksimaciji grupnog kašnjenja allpass filtara. Rezultujući selektivni filtar je realizovan 

paralelnom vezom dva allpass filtra. Ovakva struktura omogućava realizaciju komplementarnih 

filtara uz uštedu hardvera. Kod procedura za projektovanje filtara baziranih na aproksimaciji faze 

mogu da nastanu  problemi sa razmotavanjem faze, koji se potpuno izbegavaju predloženim 

postupkom. Postupak određivanja početnih rešenja je takođe opisan u radu. Realizovane 

amplitudske karakteristike komplementarnih filtara su približno eliptičke. Priloženi primeri 

ilustruju efikasnost opisanog algoritma, koga karakteriše mali broj iteracija. 

Kljuĉne reĉi: All-pass filtri, paralena veza, linearna faza, aproksimacija grupnog kašnjenja, 

konstantno grupno kašnjenje 
 


