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Abstract. Structure element of a building connected with the ground in a line is usually 

modeled as a beam with the Winkler type support. The elastic property of the support is 
assumed to be linear or with cubic nonlinearity. Unfortunately, the experiments do not 

prove such an assumption. It is evident that the nonlinearity is transformed into a real 
positive number which does not need to be an integer. In this paper, the generalization of 

the beam with Winkler support is done by introducing the nonlinearity of any non-integer 
order. The line structure, i.e. beam, has transversal vibrations. The mathematical 

description of these vibrations is a nonlinear partial differential equation. To solve the 
equation, we suggest an analytic procedure. The solution is assumed as a product of a 

time and a displacement function. After averaging, the problem is transformed into a 
second order nonlinear differential equation. The approximate solution has the form of a 

cosine (ca) Ateb function. Once the obtained results have been analyzed, the influence of 
support properties on the system behavior is considered. The attention is given to the 

influence of the Winkler-Pasternak foundation, too. 
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1. INTRODUCTION 

The problem of beam vibration continually supported with elastic foundаtion is not a 
new one. Winkler was the first to introduce a continualy distributed linear support [1] 
which was assumed to model the connection between the beam and the foundation. The 
elastic property is supposed to be a linear one. The vibrations of the beam on the linear 
elastic foundation is modeled with a liner partial differential equation. Depending on the 
boundary conditions of the supproted beam, the solution of the equation are obtained. 
Further investigation in beam vibration required the improvement of the mathematical 
model due to improvement of foundation modelling. Thus, two types of models appear: 
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one which includes the – Pasternak type of foundation [2] and the other which takes into 
consideration the nonlinear properties of the foundation. Usually, instead of linear elastic 
function, a weak nonlinear cubic order elastic force is considered [3]. The nonlinearity is 
assumed to be weak in comparison to the linear terms. A significant number of papers has 
been published showing developed various mathematical models for solving partial 
differential equations with small nonlinearity [4-7]. Recently, the equation with strong 
cubic nonlinearity has recently been considered. Results obtained by solving this equation 
are more appropriate than for the small cubic nonlinearity. Experimetnal investigation 
show that nonlinearity in foundation shoud not be of cubic type. Usually, the nonlinearity 
is a deflection function with the order which may be any positive rational number (integer 
or non-integer) not smaller than 1. In this paper the self-excited vibration of a simply 
supported uniform beam on such strong nonlinear foundation is considered. 

2. MATHEMATICAL MODEL OF THE SYSTEM  

        Mathematical model of vibration of a uniform beam on a nonlinear foundation is as 

follows 
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where EI is the rigidity of beam, ρA is the elementary mass, cβ  is the coefficient of 
rigidity of foundation and β ≥ 1 is the order of nonlinearity. For the simply supported 
beam the boundary conditions are 
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where l is the length of the beam.  

Let us assume the solution of (1) in the simple form [6] 

 )/sin()(),( lxntXtxu   (3) 

where X(t) is an unknown time variable function, l is the length of the beam and n=1,2,... 

The solution (3) satisfies initial conditions (2). Substituting (3) into (1) it is 
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Due to (4) it is evident that (3) is not an exact solution of (1). It represents only an 
approximate solution. Besides, the equation (4) depends on two variables x and t. The 
aim is to eliminate from (4) the functions with variable x. Let us divide the relation (4) 
with sin(nπx/l). We have 
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This is at this point where the averaging procedure is introduced. Integrating the sinus 

function over its period of 2π, we obtain 
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where 
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The equation (6) is a strongly non-linear. Namely, the linear terms are much more smaller 

than the last term in (6). It requires the equation to be treated as a strong nonlinear one, 

i.e.,  
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where ε<<1 is a parameter of the linear term, while kβ
 
is the coefficient of the nonlinear 

term, i.e.,  
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Now, the main task is to obtain the frequency properties of the system. It requires to find 

the solution of the strong nonlinear differential equaiton (8). Unfortunately, it is not an 

easy task. 

3. SOLVING OF THE EQUATION  

Let us assume a procedure for obtaining approximate solution of (8). The suggested 

method is based on the exact solution of the pure nonlinear differential equation (ε=0). As 

is supposed that the equation (8) is the perturbed version of the pure nonlinera equation, 

the approximate solution is assumed in the form of the exact solution but with time 

variable parameters. 

For ε=0, the equation (8) transforms into a pure nonlinear equation 
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For this equation, the exact analytical solution has the form of an Ateb function [8]: 

 ),,1,(0 caXX   (11) 

where the phase angle of the cosine-Ateb function ca is 

 ,  t  (12) 

with θ=const., X0 is the amplitude of the oscillatory function and Ω is the frequency of the 

function which depends on the amplitude of vibration X0 as 
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The first time derivative of (11) is 
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where sa is the sine-Ateb function [8]. 

3.1. Approximate solution 

     We assume the solution of (8) and its time derivative in the form (11) and (14) but 

with time variable parameters:  
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and X0(t) and θ(t) are unknown functions. Substituting the assumed solution into (8) it is 
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Let us calculated the first time derivative of (15) 
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where X0= X0(t), Ω=Ω(t), sa=sa(1,β,ψ(t)), ca=ca(β,1,ψ(t)). Equating the relations (16) and 

(18), it is evident that the assumption (16) is regular only if the following relation is 

satisfied: 

 .0
1

2 0
0 


 sa

X
caX



  (20) 

Using (18) and (20), after some transformation it is 
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Relations (21) and (22) represent the two first order differential equations which 

correspond to the second order equation (8). Solving coupled equations (21) and (22) is 
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very unconvenient, and the approximate procedure is introduced. Using the periodical 

property of the Ateb functions, they are averaged over the period  
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and B is the Beta function [8]. For 
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the averaged equations (21) and (22) are 
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As the solution of (26) is X0=const., we integrate (27) and obtain  
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where θ0 is a constant of integration. Substituting the result (28) into (17), the phase of 

the Ateb function is obtained 
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Based on (29) and the periodic property of the Ateb function, the frequency of (8) follows 

as 
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Substituting (29) into (11) and (17) it is 
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and the time derivative of (31)  
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we have  
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Multiplying (33)2 with sin(nπx/l) and integrating the equation over the period of this 

function the initial values for X0n follow as 
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Finally, the approximate solution of (8) is 

 )).1(
2

)1(
,1,()sin(

1

0

2

2

1

1

0

2

1
0 









 





 




n

n

n
n

Xk

CkXk
tca

l

xn
Xu  (35) 

It can be concluded that in spite of the assumption that the form of vibration 

correspond to the linear oscillator the solution of (8) is quite complex. Nevertheless, the 

most important parameter of the system is its frequency of vibration.  

3.2. Frequency of vibration 

   According to (30) and (34) the frequency of vibration of the n-th mode is 
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i.e.,  

   ).
3

2

1(
2

)1(

2

1
,

1

1
1

0

)1/(24

1

01 












































 











n

nn

XCc

l

n
EI

X
A

Cc

B

 (37) 

Analyzing the relation (37) it can be seen that the dependance of the frequency on the 

properties of foundation is very complex. For simplicity, let us rewritten (37) in the form 
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From the second term of (38), it is seen that the rigidity coefficient of the Winkler 

foundation has no affects to the frequency of the free beam. The frequency of the free 

beam vibration is multiplied with parameters which depend on the order of nonlinearity 

β. It is the reason that the influence of the order of the foundation nonlinearity on the 

frequency of vibration is discussed. 

To prove the correctness of the relation (38), the special case when the elasticity of 

foundation is linear will be considered. For that case the approximate frequency of 

vibration is approximately  
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The relation (39) corresponds to the well known one, where the quadratic value of the 

frequency is a sum of quadratic frequencies of the free beam and of a hamonic oscillator 

with a mass ρA and elasticity c1. 

If the nonlinearity of Winkler foundation is of cubic order, the relation (37) gives the 

approximate frequency as 
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Comparing (40) with the value given in [3]  
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where the nonlinearity of Winkler type is small, it is obvious that the form of the 

solutions is the same, but the coefficients differ. It is due to the fact that in (40) the linear 

term is considered as a small one. 

4. EXAMPLE  

     Let us consider the first frequency mode of vibration. For that case the first 

approximate frequency of vibration is 
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To examine the influence of the order of nonlinearity of the Winkler foundation, we 

introduce the following numerical data into (42): cβ=1, X01=0.5, l=π, EI/ρA=1. According 
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to (42) the frequency of vibration is calculated. The parameter β is varied. The obtained 

values are shown in the Table 1. 

Table 1 Frequency – order of nonlinearity relation  

β Ω11 

1 1.06066 

5/3 0.84145 

2 0.80609 

3 0.84514 

10/3 0.88590 

 

Analysing the calculated values it is obvious that for the given values the frequancy of 

vibration is smaller for the nonlinear than for the linear Winkler foundation. Besides, for 

the order of nonlinearity in the interval [1,2] the frequency decreases with increasing the 

order, while in the interval [2,4] the frequency increases with β. 

5. CONCLUSION  

In this paper the influence of the order of the Winkler type nonlinearity on self-

excited vibrations of a line structure (beam) has been investigated. A Bernouli-Euler 

beam is settled on the nonlinear foundation. Vibration is described by a partial 

differential equation. An approximate method for obtaining the solution has been 

developed. The motion is described in the form of two multipled functions: the first is the 

exact temporal function and the second is an approximate space function which satisfies 

the boundary conditions. It is shown that the beam on a linear Winkler foundation has 

higher frequencies than others on the nonlinear one. A general conclusion about tendency 

of frequency of a beam on nonlinear fundation can not be given a'priori, as the frequency 

- β parameter function is implicit.  
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SAMOPOBUDNE OSCILACIJE  

LINIJSKOG TEMELJNOG NOSAČA 

Linijski strukturni element zgrade koji je povezan sa podlogom obično se modelira kao greda 

sa Vinklerovim oslanjanjem. Pretpostavka je da su elastične osobine oslonca linearne ili sa 

kubnom nelinearnošću. Medjutim, eksperimentalna istraživanja ukazuju da ti parametric odstupaju 

od tih vrednosti i da je kod realnih sistema nelinearnost sa stepenom koji je pozitivan neceo realan 

broj. U ovom radu su korišćeni ti rezultati i izvršeno je upštavanje vezano za stepen nelinearnosti. 

Linijska struktura, odn., greda podložna je transverzalnim vibracijama i cilj rada je da se ispita 

kretanje za slučaj ma koje stepene nelinearnosti. Matematički model koji opisuje to kretanje je 

parcijalna nelinearna diferencijalna jednačina. U radu je dat približni analitički metod rešavanja 

ove jednačine. Rešenje se pretpostavi u obliku proizvoda vremenske funkcije i funkcije pomeranja. 

Nakon osrednjavanja, problem se transformiše u nelinearnu diferencijalnu jednačinu drugog reda 

koja ima približno rešenje oblika ca – Ateb funkcije. Analizom dobivenih rezultata zaključujemo o 

uticaju parametara podloge na ponašanje sistema. U radu je posebna pažnja posvećena i visko – 

elastičnom. 

Ključne reči: nelinearne oscilacije, Vinklerov oslonac, Pasternakov oslonac. 

 


