
FACTA UNIVERSITATIS  
Series: Working and Living Environmental Protection Vol. 17, No 3, 2020, pp. 151 - 162 

https://doi.org/10.22190/FUWLEP2003151S 

© 2020 by University of Niš, Serbia | Creative Commons Licence: CC BY-NC-ND 

PREDICTING PRIMARY ENERGY SAVINGS OF BUILDING 

RETROFIT MEASURES WITH DECISION-TREE-BASED 

ENSEMBLE METHODS  

UDC 620.9:728.2]:005.322 

Mirko M. Stojiljković, Marko G. Ignjatović, Goran D. Vučković 

University of Niš, Faculty of Mechanical Engineering in Niš, Serbia 

Abstract. Primary energy is the quantity often used to express the total amount of 

consumed or saved energy. It is especially important for certification and standards 

compliance evaluation of buildings. In order to accurately assess primary energy 

consumption and savings of building retrofit measures, one needs adequate models that can 

be based on the knowledge of phenomena, on the collected data, or both. This paper 

analyzes the learning performance and accuracy of data-driven models based on decision 

trees that predict primary energy savings related to building retrofit measures. It uses 

supervised machine learning methods — regression decision trees and ensemble methods 

based on them — to train, validate, and test such models. Ensemble methods based on 

decision trees are powerful, accurate, but also convenient to prepare and fast to train. In 

addition, they calculate the relative importance of each feature. The research results with 

highly accurate data-driven models and consistent feature importance values. 
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1. INTRODUCTION 

Primary energy (PE) is a convenient quantity often used to express the total amount of 

consumed and saved energy when evaluating compliance to energy performance standards or 

certifying energy performance of buildings [1, 2]. It heavily depends on the properties of the 

thermal envelope of buildings, installed energy conversion and distribution systems, and 

occupants’ behavior. 

Accurate models for the prediction of energy performance are very important for planning 

and optimization related to buildings [3]. Foucquier et al. [4] divided these techniques into 

three categories: (1) white-box methods, (2) black-box methods, and (3) hybrid methods. 

White-box methods are based on physical models and can be further classified according to 
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the level of details they consider. Black-box methods use the existing data related to the 

building performance measure of interest and apply machine learning techniques. White-

box methods are suitable when the physical phenomena are well understood and adequate 

input data exists. However, they can be overly complex and computationally-intensive, 

especially when high precision is required. Black-box methods are more efficient, do not 

rely on physical models, but their performance significantly depends on the volume and 

quality of used data. Hybrid methods combine white- and black-box approaches taking the 

advantages of both. Deb et al. [3] underlined that precise evaluation of energy consumption 

might be very hard when using white-box methods, due to complex physical models and that 

data-driven models can be an important alternative. Seyedzadeh et al. [5] consider machine 

learning methods promising for planning retrofit of complex buildings when intensive white-

box calculations are an alternative. 

Mosavi et al. [6] presented a wide range of machine learning applications related to 

energy systems and buildings including prediction of energy consumption, load, costs, 

solar radiation, wind speed, power quality, etc. Supervised machine learning methods are 

successfully used to predict heating and cooling demand of buildings [7–9], electricity 

demand [10, 11], indoor air temperature [12, 13], occupancy and users behavior [14, 15], 

etc. They can be applied to ensure thermal comfort [16–18], aid the optimization process, 

usually in combination with building simulation and genetic algorithm [19–23], or 

improve building control implementation [16, 24–29]. Unsupervised machine learning 

methods are also used for solving building-related problems [30]. For example, cluster 

analysis is often combined with supervised methods [31–34], often as a preprocessing 

technique. Reinforcement learning can be exploited for short-term prediction of energy 

consumption [35], especially in control applications [36]. 

Although many types of machine learning methods are present in buildings-related 

applications, regression analysis is dominant. It is usually performed with artificial neural 

networks (ANN) or support vector machines (SVM), while random forest (RF), gradient 

boosting (GB), linear regression, and other methods are used on several occasions. 

Ahmad et al. [37] compared feedforward ANN and RF in terms of performance when 

predicting the energy consumption of a hotel building. Although ANN was slightly more 

accurate, they concluded that both methods are suitable to predict energy consumption 

and that the best method cannot be determined a priory, but by testing different options. 

They underlined that RF is faster to train, has fewer hyperparameters that need tuning, 

and handles categorical variables better and noticed that ensemble methods (including 

RF) are often ignored in buildings-related applications despite the results and attention 

they have in other fields. In the case considered by Touzani et al. [38], GB performed 

slightly better than RF when predicting energy consumption. Cui et al. [12] applied RF 

and GB (as well as other methods) as a part of a hybrid approach that predicts the indoor 

air temperature that combines the resistor-capacitor and black-box models. Seyedzadeh et 

al. [39] predicted heating and cooling loads with RF in the frame of a multi-objective 

optimization approach and Smarra [27] used if for data-driven model predictive control. 

Wang et al. [40] found extreme GB the best approach to predict cooling load one day 

ahead. RF was very well-performing when used for classification to learn human 

interactions [41] and predict occupancy [15]. 
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This paper examines the possibility of using decision trees (DT) and the related 

ensemble methods — RF, GB, and extremely randomized trees (ET) — for predicting PE 

savings (PES) related to the energy retrofit measures of residential buildings connected to 

district heating systems. 

2. PROBLEM FORMULATION 

This paper applies DT and ensemble machine learning methods RF, ET, and GB to 

assess PES of retrofit measures for some of the typical Serbian residential buildings connected 

to district heating (DH) systems. Figure 1 displays the three-dimensional drawings of the 

buildings. 

Building A 

 
Building B 

 

Building C 

 
 

Fig. 1 Analyzed buildings 
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The main goal is to evaluate the performance of data-driven black-box surrogate 

models for predicting PES. The models should perform a regression analysis in which the 

output is PES and inputs are the quantities related to renovation measures. This paper 

focuses only on the improvement of the thermal envelope of a building, although the 

methodology might be extended to consider energy systems as well. There are six input 

variables (features): 

1. The thermal conduction resistance of the insulation of exterior walls, in [m²K/W], 

calculated as Re=d/λ, where d is the insulation thickness, in [m], and λ is the conductivity, 

in [W/(mK)]; 

2. The thermal conduction resistance of the insulation of interior walls, Ri, in [m²K/W]; 

3. The thermal conduction resistance of the insulation of floor, Rl, in [m²K/W]; 

4. The thermal conduction resistance of the insulation of ceiling or roof, Ru, in [m²K/W]; 

5. The U-value (thermal transmittance) of the windows, Uf, in [W/(m²K)]; 

6. The non-dimensional total solar energy transmittance of the windows, g. 

The data for the regression analysis is obtained by calculating PES for a limited 

number of combinations of retrofit measures using the methodology described in [42]. PE 

conversion factors are also taken from [42]. Their values are fDH=1.8 for DH and fE=2.5 

for electricity. 

The regression analysis is performed for three existing residential buildings located in 

the City of Niš (Serbia), typical for Serbia. The buildings are heated from the DH system 

and cooled with electrical air-to-air split-systems. The main properties of the chosen 

buildings are shown in Table 1. It should be mentioned that the insulation of the interior 

walls has not been considered for building A. 

Table 1 Main properties of considered buildings 

Building Floor area 

[m²] 
No. of 

storeys 
Type Remark 

A  185  2 Single-family Masonry walls. Pitched roof of wood and tiles.  

No insulation. Old double wood windows. 
B  755  5 Multi-family Masonry walls without insulation.  

Insulated flat roof. Old double wood windows. 
C 5718 15 Multi-family Concrete construction. Old double wood windows. 

Reference [43] also describes the buildings and considered retrofit measures. 

3. METHODOLOGY 

Regression models that map the input variables related to the building retrofit measures 

into PES are built and trained with DT and ensemble methods RF, ET, and GB. 

DT is a supervised machine learning method that learns if-else rules using available 

observations and later applies these prediction rules. They are simple to understand and 

convenient to interpret and even visualize the results. They require little effort related to 

data preparation and work fine with categorical features. However, DT is prone to 

overfitting, i.e. creating excessively complex trees that sometimes fail to generalize well. 
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Ensemble methods based on DT use multiple trees (estimators) together to improve 

the prediction performance. Averaging methods use multiple independent estimators and 

average their results. RF and ET are ensembles of DT where each tree is trained with a 

sample of observations randomly chosen with replacement. The predicted value is 

calculated as the average of the predictions of all trees. Boosting methods like GB build 

estimators incrementally and sequentially. 

RF, ET, and GB are very powerful and precise prediction methods. Like DT, they 

require little data preparation and handle categorical variables well. They have a small 

number of hyperparameters, which makes them easy to tune. They are usually much 

faster to tune and train compared to ANN and SVM and less computationally intensive. 

In addition, they can naturally estimate the relative importance of each feature, have the 

warm start option to add estimators without recalculations, and use the out-of-bag data 

instead of the validation set. 

Regression models are trained using the mean square error (MSE) as a loss function 

to be minimized. Equation (1) defines MSE: 
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where n is the number of observations, o is the observed value of the output and p is the 

predicted value of the output. 

In this paper, the regression results are presented in terms of the root MSE (RMSE), 

the root square of MSE, which is more convenient for interpretation because it is 

expressed in the same physical units as the output variable. Equation (2) defines RMSE: 

 RMSE MSE=  (2) 

The data for training, validating, and testing DT, RF, ET, and GB models are 

provided by calculating annual heating and cooling demands, QH,nd and QC,nd, as well as 

PE, all expressed in kWh/m², according to [42]. Once the heating and cooling demands 

are calculated, PE can be obtained with Eq. (3): 
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where ηHS is the efficiency of the heating system and SEER is the seasonal energy 

efficiency ratio. 

PES of a combination of retrofit measures is calculated as the difference between PE for 

the baseline (do-nothing) scenario, PEb and PE for the observed combination of measures, 

PEr, as shown in Eq. (4): 

 
b rPES PE PE= −  (4) 

Each combination of retrofit measures is a vector of six input variables (Re, Ri, Rl, Ru, 

Uf,, g), i.e. one observation. Each observation corresponds to one value of PES. 
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The entire dataset for each building is obtained in an exhaustive manner, i.e. by 

calculating PES for all combinations of retrofit measures. The training and validation 

data is randomly selected from the dataset. The models are tested with the remaining 

data, not used previously for training or validation. The learning curves that illustrate the 

dependence between the performance on the size of the training set are obtained with the 

k-fold cross-validation. 

The optimization of hyperparameters has not been performed. Instead, fully grown 

trees were allowed. For each ensemble method, 100 estimators were used and the 

learning rate for GB was 0.1. 

4. RESULTS AND DISCUSSION 

For each building, one combination of retrofit measures represents one observation with 

the vector of input variables (Re, Ri, Rl, Ru, Uf,, g) and the output PES. PES values are 

calculated for each observation and each building. Building A has 19.800 observations (the 

insulation of the interior walls is not considered), while buildings B and C have 217.800 

observations each. Maximal PES values are 238.44, 278.41, and 137.86 kWh/m², for 

buildings A, B, and C, respectively. 

For each building, a part of all observations is used to train and validate data-driven 

models, while the rest is applied for testing. The testing and validation part varies 

between 0.01 and 0.6, i.e. between 1% and 60% of the entire dataset. 

This paper first analyzes the learning performance of the data-driven models, i.e. the 

size of the training set required to obtain accurate models that capture the dependencies 

and generalize well. Figures 2–5 illustrate the learning curves of DT, RF, ET, and GB, 

respectively, according to the part of the dataset used for training and validation. 

It can be seen that in most cases, when training and validation portions of the entire 

dataset are between 0.25 and 0.4 (25% and 40%), the training and validation RMSE 

averages come very close to each other, leaving a small gap in between. For buildings B 

and C, the values of RMSE are small all the time, while for building A, small datasets 

have a relatively large validation RMSE. This difference is the consequence of the fact 

that the dataset for building A is considerably smaller than for the other two buildings. 

The standard deviation values for the validation sets are large for smaller datasets, 

especially in the case of building A, but drop significantly and remain below 1 kWh/ m² 

when the portion of the training and validation set exceeds 0.2. 

Thus, the learning performance heavily depends on the size of the training set up to 

some point and then remains approximately constant. In the examples examined here, the 

threshold is around 0.3 (30% of data used for training and validation) or lower, depending 

more on the dataset and less on the method applied. This is confirmed with the prediction 

accuracy obtained with the test sets, as shown in Table 2. The results indicate that, in this 

case, it is possible to obtain accurate data-driven models for PES prediction that 

generalize well by calculating around 30% of the observations chosen randomly. For the 

rest of the retrofit combinations, PES can be calculated with the data-driven models. 
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Fig. 2 Learning curve for decision trees 

  

Fig. 3 Learning curve for random forest 

 

Fig. 4 Learning curve for extremely randomized trees 
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Fig. 5 Learning curve for gradient boosting 

Table 2 presents RMSE values when 30% of all data is used for training and 

validation. RMSE for the training and validation sets is averaged over cross-validation 

folds. The results show that RMSE is far below 1 kWh/m² for the test sets, except when 

applying DT in the case for building A. They indicate very high accuracy of all methods. 

There is no single method that yields the best RMSE — RF, ET, and GB have the highest 

precision in some cases — and the differences are very small. 

Table 2 Values of RMSE for the training set part of 0.3 

Method 
Building A Building B Building C 

Train Validation Test Train Validation Test Train Validation Test 
DT 0.0081 1.4634 1.4323 0.0017 0.4323 0.3944 0.0136 0.1616 0.1553 
RF 0.1502 0.9093 0.7570 0.0285 0.1900 0.1694 0.0224 0.0969 0.0938 
ET 0.0081 0.6690 0.6979 0.0017 0.1477 0.1303 0.0136 0.1071 0.1077 
GB 0.6602 0.7940 0.6911 0.6202 0.6427 0.6551 0.2498 0.2555 0.2361 

DT-based methods conveniently provide information on the relative importance, i.e. 

predictive power of each input variable. Figures 6–9 show the relative importance of the 

features for each of the used methods. For building A, very consistent results are obtained 

with all methods. The insulation of the exterior walls is the most important with 48–49%, 

followed by the floor insulation with about 25%, etc. For buildings B and C, two windows-

related features have higher predictive power than the insulation. The relative contributions of 

the two vary, but their sum is approximately the same. This is valid for building A as well 

and might indicate the existence of the correlation among these two variables. The 

importance of other features are consistent across methods again. 
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Fig. 6 Feature importance for decision trees 

 

Fig. 7 Feature importance for random forest 

 
Fig. 8 Feature importance for extremely randomized trees 

 

Fig. 9 Feature importance for gradient boosting 
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Thus, DT and DT-based ensembles provided highly accurate data-driven models that 

predict PES of the building retrofit measures, low variation across folds except for very 

small training sets, and consistent feature importance values. 

5. CONCLUSION 

This paper examined the applicability and accuracy of regression decision trees and 

related ensemble methods — random forest, gradient boosting, and extremely randomized 

trees — to create data-driven models that predict primary energy savings of retrofit measures 

for typical Serbian residential buildings connected to district heating systems. The considered 

measures are related to the improvements of the building thermal envelope. 

In addition to being relatively fast to train, these methods yielded very accurate models, 

except in some cases with very small training sets. The k-fold cross-validation shows vary low 

variance across the folds, again except for some cases with small training sets. Ensemble 

methods gave slightly better results than decision trees. No particular ensemble method had 

the best performance in all cases. The applied methods have a convenient property to provide 

the relative importance of each feature. In most cases, all methods yield consistent results. 

Future work might include: comparison of these methods against widely-used alternatives 

like artificial neural networks and support vector machines, both in terms of predictive 

accuracy and computational intensity; combine them with unsupervised learning methods; 

and test performance when considering the systems for energy supply and distribution in 

addition to the envelope-related measures. 
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PREDVIĐANJE UŠTEDE PRIMARNE ENERGIJE MERA  

ZA RENOVIRANJE ZGRADA ANSAMBL METODAMA  

NA BAZI STABALA ODLUČIVANJA  

Primarna energija je veličina kojom se često izražava ukupna količina potrošene ili sačuvane 

energije. Posebno je važna za sertifikaciju zgrada i proveru usklađenosti sa standardima. Da bi se 

precizno procenila potrošnja ili ušteda primarne energije, potrebni su adekvatni modeli koji mogu 

biti zasnovani na znanju o fenomenima, na prikupljenim podacima ili oba. U ovom radu se 

analiziraju performanse učenja i preciznost modela zasnovanih na podacima i kreiranim na bazi 

stabala odlučivanja koji predviđaju uštedu primarne energije mera renoviranja zgrada. Rad koristi 

metode nadgledanog mašinskog učenja — regresiona stabla odlučivanja i ansambl metode zasnovane na 

njima — za treniranje, validaciju i testiranje ovih modela. Ansambl metode zasnovane na stablima 

odlučivanja su moćne, precizne, a uz to pogodne za pripremu i brzo treniranje. Pored toga, one računaju 

relativni značaj svake ulazne promenljive ponaosob. Istraživanje je rezultiralo veoma preciznim 

modelima zasnovanim na podacima i konzistentnim vrednostima značaja promenljivih. 

Ključne reči: zgrade, modeli zasnovani na podacima, ansambl metode, ušteda primarne energije, 

nadgledano mašinsko učenje 


